Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
Ta có : \(x-3y=5\Rightarrow x=3y+5\)
Thay vào biểu thức A ta được :
\(A=\left(3y+5\right)\left(3y+5-9y+1\right)+3y\left(3y+5+3y-1\right)-2\)
\(=\left(3y+5\right)\left(-6y+6\right)+3y\left(6y+4\right)-2\)
\(=3y\left(-6y+6\right)+5\left(-6y+6\right)+18y^2+12y-2\)
\(=-18y^2+18y-30y+30+18y^2+12y-2\)
\(=30-2=28\)
Vậy : \(A=28\) khi \(x-3y=5\)
1
\(A=x\left(x-9y+1\right)+3y\left(x+3y-1\right)-2\)
\(A=x^2-9xy+x+3xy+9y^2-3y-2\)
\(A=x^2-6xy+9y^2+x-3y-2\)
\(A=\left(x-3y\right)^2+\left(x-2y\right)-2\)
\(A=25-5-2=18\)
bạn kia lm sai r thì phải.nếu đúng thì cho sorry
\(C1:=3+1-3y\)
\(=4-3y\)
\(C2:\)
\(a.=3x\left(2y-1\right)\)
\(b.=\left(x-y\right)\left(x+y\right)+4\left(x+y\right)\)
\(=\left(x-y+4\right)\left(x+y\right)\)
\(C3:\)
\(a.6x^2+2x+12x-6x^2=7\)
\(14x=7\)
\(x=\frac{1}{2}\)
\(b.\frac{1}{5}x-2x^2+2x^2+5x=-\frac{13}{2}\)
\(\frac{26}{5}x=-\frac{13}{2}\)
\(x=-\frac{13}{2}\times\frac{5}{26}\)
\(x=-\frac{5}{4}\)
Bạn Moon làm kiểu gì vậy ?
1) \(\left(3x^2y^2+x^2y^2\right):\left(x^2y^2\right)-3y\)
\(=\left[\left(x^2y^2\right)\left(3+1\right)\right]:\left(x^2y^2\right)-3y\)
\(=4-3y\)
2) a, \(6xy-3x=\left(3x\right)\left(2y-1\right)\)
b, \(x^2-y^2+4x+4y=\left(x+y\right)\left(x-y\right)+4\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+4\right)\)
3) a, \(2x\left(3x+1\right)+\left(4-2x\right)3x=7\)
\(< =>6x^2+2x+12x-6x^2=7\)
\(< =>14x=7< =>x=\frac{7}{14}\)
b, \(\frac{1}{2}x\left(\frac{2}{5}-4x\right)+\left(2x+5\right)x=-6\frac{1}{2}\)
\(< =>\frac{x}{2}.\frac{2}{5}-\frac{x}{2}.4x+2x^2+5x=-\frac{13}{2}\)
\(< =>\frac{x}{5}-2x^2+2x^2+5x=-\frac{13}{2}\)
\(< =>\frac{26x}{5}=\frac{-13}{2}\)
\(< =>26x.2=\left(-13\right).5\)
\(< =>52x=-65< =>x=-\frac{65}{52}=-\frac{5}{4}\)
1)
\(a;4-\left(a-b\right)^2=2^2-\left(a-b\right)^2=\left(2+a-b\right)\left(2-a+b\right)\)
\(b;\left(3x-2y\right)^2-\left(2x-3y\right)^2=\left(3x-2y+2x-3y\right)\left(3x-2y-2x+3y\right)\)
\(=\left(5x-5y\right)\left(x+y\right)=5\left(x-y\right)\left(x+y\right)\)
\(c;16x^2-0,01=\left(4x\right)^2-0,1^2=\left(4x-0,1\right)\left(4x+0,1\right)\)
2)
\(x^2+16-8x=0\)
\(\Leftrightarrow x^2-8x+16=0\)
\(\Leftrightarrow\left(x+4\right)^2=0\)
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
\(1.a)\)\(4-\left(a-b\right)^2=\left(2+a-b\right)\left(2-a+b\right)\)
\(b)\)\(\left(3x-2y\right)^2-\left(2x-3y\right)^2=\left(3x-2y+2x-3y\right)\left(3x-2y-2x+3y\right)\)
\(\left(5x-5y\right)\left(x+y\right)=5\left(x-y\right)\left(x+y\right)\)
\(c)\)\(16x^2-0,01=16x^2-\frac{1}{100}=\left(4x-\frac{1}{10}\right)\left(4x+\frac{1}{10}\right)\)
\(2.\)Ta có : \(x^2+16-8x=0=>\left(x-4\right)^2=0=>x-4=0=>x=4\)
Vậy \(x=4\)
\(a,xy+1-x-y\)
\(=\left(xy-y\right)+\left(1-x\right)\)
\(=y\left(x-1\right)- \left(x-1\right)\)
\(=\left(x-1\right)\left(y-1\right)\)
\(b,ax+ay-3x-3y\)
\(=a\left(x+y\right)-3\left(x+y\right)\)
\(=\left(x+y\right)\left(a-3\right)\)
\(c,x^3-2x^2+2x-4\)
\(=x^2\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x^2+2\right)\left(x-2\right)\)
\(d,x^2+ab+ax+bx\)
\(=\left(x^2+ax\right)+\left(ab+bx\right)\)
\(=x\left(a+x\right)+b\left(a+x\right)\)
\(=\left(a+x\right)\left(b+x\right)\)
\(e,16-x^2+2xy-y^2\)
\(=4^2-\left(x^2-2xy+y^2\right)\)
\(=4^2-\left(x-y\right)^2\)
\(=\left(4-x+y\right)\left(4+x-y\right)\)
Bài 1.
a) x( 8x - 2 ) - 8x2 + 12 = 0
<=> 8x2 - 2x - 8x2 + 12 = 0
<=> 12 - 2x = 0
<=> 2x = 12
<=> x = 6
b) x( 4x - 5 ) - ( 2x + 1 )2 = 0
<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0
<=> 4x2 - 5x - 4x2 - 4x - 1 = 0
<=> -9x - 1 = 0
<=> -9x = 1
<=> x = -1/9
c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )
<=> -4x2 - 4x + 35 = 4x2 - 25
<=> -4x2 - 4x + 35 - 4x2 + 25 = 0
<=> -8x2 - 4x + 60 = 0
<=> -8x2 + 20x - 24x + 60 = 0
<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0
<=> ( 2x - 5 )( -4x - 12 ) = 0
<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
d) 64x2 - 49 = 0
<=> ( 8x )2 - 72 = 0
<=> ( 8x - 7 )( 8x + 7 ) = 0
<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)
e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0
<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0
<=> ( x + 3 )2 [ x( x + 1 ) + 7( x + 1 ) ] = 0
<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0
<=> x = -3 hoặc x = -1 hoặc x = -7
g) ( x2 + 1 )( x2 - 8x + 7 ) = 0
Vì x2 + 1 ≥ 1 > 0 với mọi x
=> x2 - 8x + 7 = 0
=> x2 - x - 7x + 7 = 0
=> x( x - 1 ) - 7( x - 1 ) = 0
=> ( x - 1 )( x - 7 ) = 0
=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)
Bài 2.
a) ( x - 1 )2 - ( x - 2 )( x + 2 )
= x2 - 2x + 1 - ( x2 - 4 )
= x2 - 2x + 1 - x2 + 4
= -2x + 5
b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2
= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4
= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )
= -60x2 + 40x2 + 49
d) ( x + y )2 - ( x + y - 2 )2
= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]
= ( x + y - x - y + 2 )( x + y + x + y - 2 )
= 2( 2x + 2y - 2 )
= 4x + 4y - 4
Bài 3.
A = 3x2 + 18x + 33
= 3( x2 + 6x + 9 ) + 6
= 3( x + 3 )2 + 6 ≥ 6 ∀ x
Đẳng thức xảy ra <=> x + 3 = 0 => x = -3
=> MinA = 6 <=> x = -3
B = x2 - 6x + 10 + y2
= ( x2 - 6x + 9 ) + y2 + 1
= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)
=> MinB = 1 <=> x = 3 ; y = 0
C = ( 2x - 1 )2 + ( x + 2 )2
= 4x2 - 4x + 1 + x2 + 4x + 4
= 5x2 + 5 ≥ 5 ∀ x
Đẳng thức xảy ra <=> 5x2 = 0 => x = 0
=> MinC = 5 <=> x = 0
D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )
Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN
7x2 - 8x + 7
= 7( x2 - 8/7x + 16/49 ) + 33/7
= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x
Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7
=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7
\(A=x\left(x-9y+1\right)+3y\left(x+3y-1\right)-2\)
\(=x^2-9xy+x-3xy+9y^2-3y-2\)
\(=x^2-6xy+x+9y^2-3y-2\)
\(=\left(x^2-6xy+9y^2\right)+\left(x-3y\right)-2\)
\(=\left(x-3y\right)^2+\left(x-3y\right)-2\left(1\right)\)
Thay \(x-3y=5\) vào \(\left(1\right)\) ta được:
\(A=5^2+5-2=25+5-2=28\)