Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M N P 1 2 K H 2 H 1
a) Ta có DM song song và bằng BN nên BMDN là hình bình hành (vì có 2 cạnh đối song song và bằng nhau)
b) Tam giác CDN bằng tam giác DAP (cạnh - góc - cạnh)
=> Góc D1 = góc A1
Ta lại có Góc D2 + Góc D1 = Góc D = 90 độ
=> Góc D2 + Góc A1 = 90 đo
Trong tam giác KAD có tổng 2 góc A và D bằng 90 độ nên góc K bằng 90 độ
=> AP vuông góc với DN
c) Tương tự câu b ta có BM vuông góc với AP
=> BM // DN (vì cùng vuông góc vời AP)
=> BMKN là hình thang.
Theo câu b tam giác KAD vuông tại K có KM là trung tuyến ứng với cạnh huyền => KM = 1/2 AD
=> KM = BN
=> BMKN là hình thang cân
d) \(DP=\frac{1}{2}\sqrt{5},AP=\sqrt{5-\frac{1}{4}5}=\frac{\sqrt{15}}{2}\)
\(DP^2=PK.PA\)
=> \(PK=\frac{DP^2}{PA}=\frac{\frac{5}{4}}{\frac{\sqrt{15}}{2}}=\frac{\sqrt{15}}{6}\)
=> \(\frac{PK}{PA}=\frac{\frac{\sqrt{15}}{6}}{\frac{\sqrt{15}}{2}}=\frac{1}{3}\)
=> Đường cao hạ từ K xuống DC bằng 1/3 đường cao hạ từ A xuống DC
=> Đường cao hạ từ K xuống DC = \(\frac{1}{3}\sqrt{5}\)
=> Đường cao hạ từ K xuống MN bằng \(\frac{1}{2}\sqrt{5}-\frac{1}{3}\sqrt{5}=\frac{\sqrt{5}}{6}\)
=> Diện tích KMN bằng \(\frac{1}{2}.MN.KH_2=\frac{1}{2}\sqrt{5}\frac{\sqrt{5}}{6}=\frac{5}{12}\)
a,Hình bình hành ABCD có AB=CD
⇒12AB=AM=12CD=CN⇒12AB=AM=12CD=CN
Mặt khác, M,N lần lượt là trung điểm của AB và CD
Do đó, AM//CN
Tứ giác AMCN có cặp cạnh đối vừa song song vừa bằng nhau nên là hình bình hành (đpcm)
b, Tứ giác AMCN là hình bình hành
⇒⇒M1ˆ=N1ˆM1^=N1^ (Hai góc đối của hình bình hành AMCN)
⇒⇒M2ˆ=N2ˆM2^=N2^ (Do M1ˆM1^ và M2ˆM2^ là hai góc kề bù; N1ˆN1^ và N2ˆN2^ là hai góc kề bù)
Mặt khác, ABCD là hình bình hành nên AB//CD ⇒⇒B1ˆ=D1ˆB1^=D1^
ΔEDNΔEDN và ΔKBMΔKBM có:
M2ˆ=N2ˆM2^=N2^
DN=BMDN=BM
B1ˆ=D1ˆB1^=D1^
⇒ΔEDN=ΔKBM(g.c.g)⇒ΔEDN=ΔKBM(g.c.g)
⇒ED=KB⇒ED=KB (đpcm)
c, Gọi O là giao điểm của AC và BD.
ABCD là hình bình hành
⇒OA=OC⇒OA=OC
ΔCABΔCAB có:
MA=MBMA=MB
OA=OCOA=OC
MC cắt OB tại K
⇒⇒ K là trọng tâm của ΔCABΔCAB
Mặt khác, I là trung điểm của BC
⇒⇒ IA,OB,MC đồng quy tại K
Hay AK đi qua trung điểm I của BC (đpcm)
1A) Gọi I là giao điểm của EF và AB Vì EF là đường trung trực của MB nên BE=BF xét hai tam giác BEI và BFI thì chúng bằng nhau ( t. hợp ch-cgv) IE=IF; EF vuông góc AB =) E và F đối xứng nhau qua AB nên ta chứng minh được hai tam giác BEI và BF1 bằng nhau. 1b) gọi I là giao điểm của MB và EF
ta có EI là đường trung bình của tam giác MEB
nên tam giác MEB cân tại E => góc EMB = góc EBM
có EI là đường cao đồng thời là đường phân giác
nên góc MEI = góc BEI
ta có MN//BC//AD
hay ME//BF
nên góc MFI = góc IFB; góc EMB = góc FBM ( 2 góc slt)
mà góc MEI = góc BEI
nên góc IFB = góc BEI
=> tam giác BEF cân tại B
lại có BI là tia phân giác (góc EBI = góc FBI=góc EMI)
hay BI là đường trung tuyến
ta có EF vuông góc với MB
I là trung điểm của MB và EF
nên tứ giác MEBF là hình thoi 1c)*Vì EB // NC nên EBCN là hình thang có 2 đáy là EB và NC
để EBCN là hình thang cân thì EN = BC
a/ Ta có
AB=BC và MA=MB; NB=NC => MB=NC
Xét hai tg vuông BMC và tg vuông CNC có
MB=NC (cmt)
BC=CD (cạnh hình vuông)
=> tg BMC= tg CND => ^BMC=^CND (1)
Trong tg vuông BMC có ^BCM+^BMC=90 (2)
Từ (1) và (2) => ^BCM+^CND=90 => ^CHN=90 => MC vuông góc DN
b/
Ta có AB=CD (cạnh hình vuông) và MA=MB; KC=KD => MA=KC
Mà MA//KC
=> AMCK là hình bình hành => AK//MC (3)
Xét tg CDH có ID=IH và KD=KC (đề bài) => IK là đường trung bình => IK//MC (4)
Từ (3) và (4) => AK trùng với IK => A; I; K thẳng hàng
c/
Xét tg ADH có
AI//MC mà MC vuông góc với DN => AI vuông góc với DN => AI là đường cso của tg ADH (5)
Ta có ID=IH (đề bài) => AI là trung tuyến của tg ADH (6)
Từ (5) và (6) => tg ADH cân tại A (tam giác có đường cao đồng thời là đường trung tuyến ... là tam giác cân)
ảnh ở đâu đấy,làm sao vậy chỉ đi