Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không vẽ được hình bạn ạ
Vì Trên đường vuông góc với AB là AC mà F, C cùng nửa MF bờ AB Vẽ tại B thì không được bạn ạ
k mình nhé!
a) Xét ∆ vuông ABC và ∆ vuông AED ta có :
AB = AD (gt)
AC = AD (gt)
=> ∆ABC = ∆AED ( 2 cgv)
=> BD = DE
b) Xét ∆ABD có :
BAC = 90°
=> AD\(\perp\)AE
Mà AB = AD (gt)
=> ∆ABD vuông cân tại A
=> BDC = 45°
Chứng minh tương tự ta có :
BCE = 45°
=> BDC = BCE = 45°
Mà 2 góc này ở vị trí so le trong
=> BD//CE
Hình (tự vẽ)
a) ΔABE cân
Xét hai tam giác vuông ABH và EBH có:
\(\widehat{ABH}=\widehat{EBH}\)(BH là phân giác)
HB là cạnh chung.
Do đó: ΔABH = ΔEBH (cạnh huyền - góc nhọn)
⇒ BA = BE (2 cạnh tương ứng)
⇒ ΔABE cân tại B.
b) ΔABE đều
Vì ΔABE là tam giác cân (câu a) có góc B bằng 60o (gt) ⇒ ΔABE là tam giác đều.
c) AED cân
Vì ΔABH = ΔEBH (câu a) ⇒ AH = EH (2 cạnh tương ứng)
Xét hai tam giác vuông ADH và EDH có:
AH = EH (cmt)
HD: cạnh chung
Do đó: ΔADH = ΔEDH (2 cạnh góc vuông)
⇒ \(\widehat{DAH}=\widehat{DEH}\)(góc tương ứng)
⇒ ΔAED cân tại D
d) ΔABF cân
Vì AF// HB ⇒ góc BAF = ABH = 30o (so le trong) (1)
Ta có: \(\widehat{ABC}+\widehat{ABF}=180^o\)(kề bù)
Thay: 60o + ABF = 180o
⇒ ABF = 180o - 60o = 120o
Xét ΔABF, ta có:
\(\widehat{ABF}+\widehat{BFA}+\widehat{FAB}=180^o\)(ĐL)
Thay: 120o + BFA + 30o = 180o
⇒ BFA = 180 - 120 - 30 = 30 (2)
Từ (1) và (2) suy ra: ΔABF cân tại B.
A B C D F A B C D F A B C D E F H K a. CM AB=AF
Vì BE cắt AC tại F mà BE vuông góc AD tại E nên AE vuông góc BF
Xét tam giác AEB và tam giác AEF có
\(\widehat{BAE}=\widehat{FAE}\)(phân giác góc A cắt BC tại D)
AE chung
\(\widehat{AEB}=\widehat{AEF}\)(AE vuông góc BF)
=> tam giác AEB=tam giác AEF (g.c.g)
=>AB=AF(2 cạnh tương ứng)
b.Ta có HF // DK (đường thẳng đi qua F (gọi là a)cắt AE tại H nên H thuộc a ; a//BC mà D,K thuộc BC)
xét tứ giác HFKD :HF // DK(cmt);HF=DK (gt)
=>HFKD là hình bình hành (dhnb)
Nên DH=FK,DH//FK (t/c)
c. Vì AB <AC nên góc ABC > góc C (Cái này là lí thuyết )
a, xét tam giác ABE và tam giác ADE có : AE chung
AB = AD (Gt)
^DAE = ^BAE do AE là pg của ^BAC (gt)
=> tam giác ABE = tam giác ADE (c-g-c)
b, AB = AD (gt)
=> tam giác ABD cân tại A (đn)
c, đề sai