K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác EHK và ΔIHD có 

HE=HI

\(\widehat{EHK}=\widehat{IHD}\)

HK=HD

Do đó: ΔEHK=ΔIHD

b: Xét tứ giác KEDI có 

H là trung điểm của DK

H là trung điểm của EI

Do đó: KEDI là hình bình hành

Suy ra: EK//DI

6 tháng 1 2022

Vì M là trung điểm của EF => ME = MF

Xét △MDE và △MIF

Có : ME = MF (gt)

     DME = FMI (2 góc đối đỉnh)

       MD = MI (gt)

=> △MDE = △MIF (c.g.c)

=> DE = IF (2 cạnh tương ứng)

Và DEM = MFI (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong

=> DE // IF (dhnb)

b, Vì △MDE = △MIF (cmt)

=> DE = IF (2 cạnh tương ứng)

Xét △HDE vuông tại H và △HGE vuông tại H 

Có: HD = HG (gt)

      HE : cạnh chung

=> △HDE = △HGE (cgv)

=> DE = GE (2 cạnh tương ứng)

Mà DE = IF (cmt)

=> EG = IF (đpcm)

Mở ảnh

Hình vẽ đây nha bạn

11 tháng 3 2020

a) Xét tam giác  ABM   và tam giác  DCM có 

+ BM=CM ( gt)

+ Góc AMB = góc DMC ( đối đỉnh)

+ AM = DM

=> tam giác ABM = tam giác DCM ( c-g-c)

 b) Vì tam giác ABM = tam giác DCM

=> góc BAM = Góc CDM ( 2 góc tương ứng ) 

Ta có : Góc BAM = Góc CDM ( c/m trên)

Mà  góc BAM + CAM = 180độ( 2 góc kề bù )   (1)

      góc CDM + BDM = 180độ ( 2 góc kề bù )  (2)

Mà góc BAM = góc CDM 

Từ (1) và (2) => Góc CAM = góc BDM

Xét tam giác ACM và tam giác BDM có 

+ Góc CAM = BDM ( c/m trên)

+ BM = CM ( gt)

+ góc BMD = góc AMC ( đối đỉnh )

=> Tam giác ACM = tam giác BDM ( g.c.g)

=> AC = BD ( 2 cạnh tương ứng)

c)  bạn tự làm ạ . Mình bận

11 tháng 3 2020

A B C D M

a) +) Xét \(\Delta\)ABM và \(\Delta\)DCM có

BM =  CM ( gt)

\(\widehat{AMB}=\widehat{CMD}\) ( 2 góc đối đỉnh )

AM = DM ( gt)

=> \(\Delta\)ABM = \(\Delta\)DCM ( c-g-c)

b) +) Xét \(\Delta\)AMC và \(\Delta\)DMB có

AM = DM ( gt)
\(\widehat{AMC}=\widehat{BMD}\)  ( 2 góc đối đỉnh )

MC = MB ( gt)

=>  \(\Delta\)AMC = \(\Delta\)DMB ( c-g-c)

=> AC = DB ( 2 cạnh tương ứng )

và \(\widehat{ACM}=\widehat{DBM}\) ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong

=> AC // BD

c) +) Theo câu a ta có  \(\Delta\)ABM = \(\Delta\)DCM

=> \(\widehat{ABM}=\widehat{DCM}\) ( 2 góc tương ứng )

+) Xét \(\Delta\)ABC và \(\Delta\)DCB có

\(\widehat{ABM}=\widehat{DCM}\)  ( cmt)

BC : cạnh chung

\(\widehat{ACM}=\widehat{DBM}\) ( cmt) 

=> \(\Delta\)ABC = \(\Delta\)DCB (g-c-g)

=> \(\widehat{BAC}=\widehat{CDB}\) ( 2 góc tương ứng )

Mà \(\widehat{BAC}=90^o\) ( gt)

=> \(\widehat{CDB}=90^o\)

Học tốt

Takigawa Maraii

27 tháng 12 2015

a)xet tam giac cia va tam giac dib , co :

id=ic(gt)

goc dib = goc cia (doi dinh)

ia=ib ( i la trung diem ab )

=> tam giac cia = tam giac dib (c.g.c)

Bài 1 Cho tam giác DEF cân tại D với đường trung tuyến DIa/ Chứng minh :∆ DEI = ∆DFIb/ Các góc DIE và góc DIF là những góc gì ?c/ Biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE.Bài 2Cho tam giác ABC vuông ở A, có ∠C = 300 , AHBC (H∈BC). Trên đoạn HC lấy điểm D sao cho HD = HB.Từ C kẻ CE ⊥ AD.Chứng minh :a)Tam giác ABD là tam giác đều .b)AH = CE.c)EH // AC .Bài 3  Cho ΔABC biết AB = 3cm, AC = 4cm, BC = 5cm....
Đọc tiếp

Bài 1 Cho tam giác DEF cân tại D với đường trung tuyến DI

a/ Chứng minh :∆ DEI = ∆DFI

b/ Các góc DIE và góc DIF là những góc gì ?

c/ Biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE.

Bài 2

Cho tam giác ABC vuông ở A, có ∠C = 300 , AHBC (H∈BC). Trên đoạn HC lấy điểm D sao cho HD = H
B.Từ C kẻ CE ⊥ A
D.Chứng minh :

a)Tam giác ABD là tam giác đều .

b)AH = CE.

c)EH // AC .

Bài 3  Cho ΔABC biết AB = 3cm, AC = 4cm, BC = 5cm. Trên tia đối của tia AC lấy điểm D sao cho AD =AC

a. Chứng minh tam giác ABC vuông

b) Chứng minh ΔBCD cân

c)Gọi E là trung điểm của BD, CE cắt AB tại O. Tính OA, OC

Bài 4:

Cho ABC cân tại A,  vẽ AH vuông góc với BC tại H. Biết AB=5cm, BC= 6cm.

a) Chứng minh BH =HC.

b) Tính độ dài BH, AH.

c) Gọi G là trọng tâm của tam giác AB
C.Chứng minh rằng A, G, H thẳng hàng.

d) Chứng minh ∠ABG = ∠ACG

Bài 5(3,5 điểm)

Cho DABC có góc C = 900 ; BC = 3cm; CA = 4cm. Tia phân giác BK của góc ABC (K∈ CA); từ K kẻ KE ⊥ AB tại E.

a) Tính AB.

b) Chứng minh BC = BE.

c) Tia BC cắt tia EK tại M. So sánh KM và KE.

d) Chứng minh CE // MA

Bài 6:

Cho  ΔABC  vuông  tại  A, đường  phân  giác  BE. Kẻ  EH  vuông  góc  với  BC (H ∈ BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:

a) ΔABE = ΔHBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC.

d) AE < EC.

Bài 7

Cho ABC cân tại A có AB = 5cm, BC = 6cm. Từ A kẻ đường vuông góc AH đến BC.

a. Chứng minh: BH = HC.

b. Tính độ dài đoạn AH.

c. Gọi G là trọng tâm Trên tia AG lấy điểm D sao cho AG = G
D.Tia CG cắt AB tại F. Chứng minh: BD = 2/3CF

d) Chứng minh: DB + DG > AB.

Bài 8

 Cho tam giác ABC vuông tại A. Trên tia đối của tia AB lấy điểm K sao cho BK = BC. Vẽ KH vuông góc với BC tại H và cắt AC tại E.

a) Vẽ hình và ghi GT – KL ?

b) KH = AC

c) BE là tia phân giác của góc ABC ?

d) AE < EC ?

Bài 9

Cho  ΔABC cân tại A, hai trung tuyến BM, CN cắt nhau tại K. Chứng minh :

a) ΔBNC =   ΔCMB

b) ΔBKC cân tại K

c) MN // BC

Bài 10  Cho ΔABC cân tại A. Gọi M là trung điểm của A
C.Trên tia đối của tia MB lấy điểm D sao cho DM = BM

a. Chứng minh ΔBMC = ΔDMA. Suy ra AD // BC.

b. Chứng minh ΔACD là tam giác cân.

c. Trên tia đối của tia CA lấy điểm E sao cho CA = CE. Chứng minh DC đi qua trung điểm I của BE.

Bài 11  Cho tam giác ABC cân tại A, đường cao AH. Biết AB = 10cm, BC = 12cm.

a) Chứng minh tam giác ABH bằng tam giác ACH.

b) Tính độ dài đoạn thẳng AH.

c) Gọi G là trọng tâm của tam giác AB
C.Chứng minh ba điểm A, G, H thẳng hàng.

0
30 tháng 12 2018

dễ thôi

........

30 tháng 12 2018

tự vẽ hình nha

a, xét TG ADM và ABM có

 AM cạnh chung

DM = BM (gt)

DA = BA (gt)

=>TG ADM = TG ABM(c-c-c)

b, ta có DMA + BMA = 180 (KB)

DMA = BMA (2 góc tương ứng) =>DMA = BMA = 90

=> AK VGóc với DB