Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: ABEˆ=12ABQˆ(BE là tia pg)
ABNˆ=12ABCˆ(BD là tia pg)
⇒ABEˆ+ABNˆ=12ABQˆ+12ABCˆ
=12(ABQˆ+ABCˆ)=12.180o=900=DBEˆk
Áp dụng t/c đoạn thẳng nối trung điểm của 2 cạnh trong 1 tam giác thì // với cạnh còn lại
→MN // BC hay MDMD // BC.BC.
⇒MDBˆ=DBPˆ
mà DBPˆ=MBDˆ
⇒MDBˆ=MBDˆ⇒ΔMBD
⇒MB=MD(1)
Do MD // BC hay ME // BQ ⇒MEBˆ=EBQˆ
mà EBQˆ=MBEˆ⇒MEBˆ=MBEˆ.
⇒ΔMEB⇒ΔMEB cân tại M ⇒ME=MB(2)
Lại có: MA=MB(gt)(3)
Từ (1);(2);(3)⇒MB=MD=ME=MA..
Xét ΔAMD;ΔBMEΔAMD;ΔBME:
MA=MB(cmt)
AMDˆ=BMEˆ(đ2)
MD=ME(cmt)
⇒ΔAMD=ΔBME(c.g.c)⇒ΔAMD=ΔBME(c.g.
⇒ADMˆ=BEMˆ
mà 2 góc này ở vị trí so le trong ⇒AD⇒AD // BE.
⇒DBEˆ+ADBˆ=180o (trong cùng phía)
⇒90o+ADBˆ=180o⇒ADBˆ=90o
⇒BD⊥AP.
a. AM là phân giác của tam giác ABC cân tại A => AM cũng là đường cao và đường phân giác trong ta giác ABC
=> góc EAM = góc FAM
=> Tam giác EAM = tam giác FAM (cạnh huyền - góc nhọn)
=> EA=FA và EM = FM (1)
TA có: AB =AC => AB - AE = AC - ÀF <=> BE = FC (2)
Và AM là đường trung tuyến của tam giác ABC => BM =MC (3)
Từ (1), (2), (3) => tam giác BEM = tam giác CFM (c-c-c)
A E B F C D M
a, Xét t/g BEM và t/g CFM có:
góc BEM = góc CFM = 90 độ (gt)
MB = MC (gt)
góc B = góc C (gt)
=> t/g BEM = t/g CFM (cạnh huyền - góc nhọn)
b, Xét t/g AEM và t/g AFM có:
EM = FM (t/g BEM = t/g CFM)
góc AEM = góc AFM = 90 độ (gt)
AM chung
=> t/g AEM = t/ AFM (c.g.c)
=> AE = AF
=> tg/ AEF cân tại A
Mà AM là tia phân giác của t/g AEF
=> AM là đường trung trực của t/g AEF hay AM là đường trung trực của EF
c, Vì t.g ABC cân tại A và AM là trung tuyến cuả BC
=> AM cũng là đường trung trực của BC (1)
=> góc AMB = 90 độ
Xét t/g DMB và t/g DMC có:
MB = MC (gt)
góc DMB = góc DMC = 90 độ (cmt)
DM chung
=> t/g DMB = t/g DMC (c.g.c)
=> DB = DC => D thuộc trung trực của BC
Mà MB = MC => M thuộc trung trực của BC
=> DM là trung trực của BC (2)
Từ (1) và (2) => A,D,M thẳng hàng
1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)
Câu trả lời
a.Vì AB=AC(gt)=> góc ABC=góc ACB ( tam giác ABC vuông cân)
mặt khác BK=KC(trung điểm BC)
=> tam giác AKB=tam giác AKC (c.g.c)
b.Vì tam giác AKB=tam giác AKC (theo câu a)
=> góc AKB=góc AKC
Mà góc AKB+góc AKC=180°
=>góc AKB=góc AKC=90°=> AK vuông góc với BC
c.Vì EC vuông góc với BC
AK vuông góc với BC
=>EC//AK =>E//K
phần a , có ab = ac , bk = kc , \(\widehat{b}\)=\(\widehat{c}\). phần b , có NC vuông vs BC , AK vuông BC [ tc tam giác vuông cân] suy ra chúng song song vì cùng vuông vs BC , phần c có hai góc a bằng 90 độ , góc B bằng góc N do cùng phụ vs góc BCN , ac chung suy ra hai tam giác BCA và ACN bằng nhau , suy ra CN =CB