K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2020

A B C H

(thêm kí hiệu góc vuông ở đỉnh A nx nha bạn, mình quên)

Cm:

Áp dụng định lí Py-ta-go:

Xét \(\Delta\)AHB có:

AH2 + BH2 = AB2     (1)

Xét \(\Delta\)AHC có:

AH2 + CH2 = AC2     (2)

Cộng (1) và (2) vế theo vế, ta được:

2AH2 + BH2 + CH2 = AB2 + AC2

<=> 2AH2 + BH2 + CH2 = BC2

<=> 2AH2 + 182 + 322 = (18+32)2

<=> 2AH2 + 1348 = 2500

<=> 2AH2 = 1152

<=> AH2 = 576

<=> AH = \(\sqrt{576}\)= 24 (cm)

Thay AH = 24 và BH = 18 vào (1) ta được:

242 + 182 = AB2

<=> 900 = AB2

<=> AB = \(\sqrt{900}\)= 30 (cm)

Thay AH = 24 và CH = 32 vào (2) ta được:

242 + 322 = AC2

<=> 1600 = AC2

<=> AC = \(\sqrt{1600}\)= 40 (cm)

Vậy AB = 30 cm ; AC = 40 cm

16 tháng 4 2020

thank ciu bạn nha <3

26 tháng 4 2020

Nguyễn Thảo Nguyên             

em chịu khó gõ link này lên google

https://olm.vn/hoi-dap/detail/99235669166.html

26 tháng 4 2020

Thế lên google mak gõ cho nhanh nha bn!

22 tháng 10 2018

Trả lời dùm minh với, mình đang vội lắm

Ai nhanh nhất mình k cho

4 tháng 2 2021
Bạn ơi hình thì bạn tự vẽ nhé Ta cótam giác anh vuông tại h(ah vuông góc BC) áp dụng đ.lí Pytago: Ab^2=ah^2+bh^2 Ab^2=2^2+1^2 Ab^2=4+1=5 Ab=√5cm(dpcm) Vì tâm giác ách vuông tại h Áp dụng đ.lí Pytago: Ac^2=ha^2+hc^2 Ac^2=2^2+4^2 Ac^2=4+16 Ac^2=20 Ac=√20cm(dpcm) Ta có BC=hb+hc=1+4=5cm Xét :bc^2=ab^2+ac^2 Bc^2=(√5)^2+(√20)^2 Bc^2=25 BC=5cm =>Tam giác ABC vuông tại a (đ.lí Pytago đảo)(dpcm)
11 tháng 3 2020

a) bạn tự vẽ hình nhé

sau khi kẻ, ta có AC=AH+HC=11

mà tam giác ABH vuông tại H

=> theo định lý Pytago => AH^2+BH^2=AB^2

=>BH=căn bậc 2 của 57

cũng theo định lý Pytago

=>BC^2=HC^2+BH^2

=>BC=căn bậc 2 của 66

11 tháng 3 2020

b) bạn tự vẽ hình tiếp nha

ta có M là trung điểm của tam giác ABC => AM là đường trung tuyến của tam giác ABC vuông tại A

=>AM=MB=MC

theo định lý Pytago =>do tam giác HAM vuông tại H

=>HM^2+HA^2=AM^2

=>HM=9 => HB=MB-MH=32

=>AB^2=AH^2+HB^2 =>AB=căn bậc 2 của 2624

tương tự tính được AC=căn bậc 2 của 4100

=> AC/AB=5/4

CHÚC BẠN HỌC TỐT!!!

8 tháng 1 2020

huhu tí nữa mình học thêm rồi nhanh lên nhé

31 tháng 1 2019

 tam giác ABHvà tam giác AKCcó:

góc AKO = góc AHO=90độ do BH vuông góc AC;CK vuông góc AB(gt) (1)

AB=AC do tam giác ABC cân tại A (gt) (2)

CHung góc A (3)

(1)(2)(3)=> tam giác ABH= tam giác ACK(ch-gn)

=> AH=AK(đn)

18 tháng 8 2019

Vì tam giác ABC là tam giác cân , suy ra AB=AC ; góc B =góc C.

Xét tam giác ABH và tam giác AKC, có

            AB = AC (cmt)

            A là góc chung

             K = H ( = 90 độ)

Suy ra tam giác ABH = tam giác AKC(g-c-g)

           suy ra BH = CK ( hai cạnh tương ứng )

           suy ra góc ABH = góc ACK ( hai góc tương ứng ) 

Xét tam giác KHB và tam giác KHC , có

            CK = BH ( cmt)

             Góc ABH = góc ACK ( cmt) 

               K = H ( = 90 độ )

Suy ra tam giác KHB = tam giác KHC ( g-c-g) 

Suy ra KB = HC ( hai góc tương ứng)

    Mà AB = BK + AK

          AC = AH + CH 

Suy ra AK = AH

Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BICCâu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên...
Đọc tiếp

Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.

Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BIC

Câu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên Bx lấy D sao cho BD = AH.

a) Chứng minh ΔAHB và ΔDHB bằng nhau.

b) Nếu AC = 12cm; BC =15cm. Tính độ dài DH.

Câu 7.  Cho tam giác ABC vuông tại B có góc B1=B; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.

a) Tính góc ABH.

b) Chứng minh đường thẳng d vuông góc với BH.

Câu 8.  Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M. Trên tia đối của tia CB lấy điểm N sao cho BM = CN.

a) Chứng minh ΔAMN là tam giác cân.

b) Kẻ BH vuông góc với AM (H thuộc AM), CK vuông góc với AN (K thuộc AN). Chứng minh rằng BH = CK.

c) Gọi O là giao điểm của BH và CK. Chứng minh  ΔOBC cân.

d) Gọi D là trung điểm của BC. Chứng minh rằng A, D, O thẳng hàng.

Câu 9. Cho tam giác ABC, điểm D thuộc cạnh BC. Gọi M là trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME = MB. Trên tia đối của tia MC lấy F sao cho MF = MC. Chứng minh:

a) AE = BD;

b) AF // BC.

c) Ba điểm A, E, F thẳng hàng.

Câu 10. Cho tam giác ABC cân tại A, M là trung điểm của BC.

a) Chứng minh góc AFE = gócABC⇒EF//BC và  ΔABM=ΔACM.

b) Chứng minh AM⊥BC.

c) Trên cạnh BA lấy  điểm E. Trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh ΔEBC và ΔFCB bằng nhau.

d) Chứng minh EF // BC.

 

0
Bài 3: Cho tam giác ABC (AB < AC). Gọi I là trung điểm của BC. Qua điểm I vẽ đường thẳng vuông góc với BC cắt tia phân giác của tại M.1.    Chứng minh MB = MC.2.    Kẻ MH vuông góc với đường thẳng AB, kẻ MK vuông góc với đường thẳng AC. Chứng minh MH = MK.3.    Chứng minh AC – AB = 2.KC.Bài 4: Cho △ABC cân tại A. Từ B và C kẻ đường thẳng vuông góc với AB và AC, chúng cắt nhau tại I.1.   ...
Đọc tiếp

Bài 3Cho tam giác ABC (AB < AC). Gọi I là trung điểm của BC. Qua điểm I vẽ đường thẳng vuông góc với BC cắt tia phân giác của tại M.

1.    Chứng minh MB = MC.

2.    Kẻ MH vuông góc với đường thẳng AB, kẻ MK vuông góc với đường thẳng AC. Chứng minh MH = MK.

3.    Chứng minh AC – AB = 2.KC.

Bài 4: Cho △ABC cân tại A. Từ B và C kẻ đường thẳng vuông góc với AB và AC, chúng cắt nhau tại I.

1.    Chứng minh IB = IC.

2.    Lấy M là trung điểm của AI. Chứng minh MB = MC.

3.    Chứng minh AI vuông góc với BC.

Bài 5Cho △ABC. Phân giác góc A và góc B cắt nhau tại I. Kẻ IM ⊥ AB (M∈AB), kẻ IN ⊥ BC (N∈BC), kẻ IQ ⊥ AC (Q∈ AC).

1.    Chứng minh △IMA = △IQA;

2.    Chứng minh IM = IN = IQ.

Bài 6Cho tam giác ABC vuông tại A. Tia phân giác của cắt AC tại D. Kẻ DK vuông góc với BC.

1.    Chứng minh DA = DK.

2.    Kẻ AH vuông góc với BC. Chứng minh tia AK là phân giác của .

Bài 10: Cho tam giác ABC, AH vuông góc với BC, AH = 12cm, AB = 15cm, CH = 16cm.

1.    Tính độ dài BH, AC.

2.    Tam giác ABC là tam giác vuông hay không? Vì sao?

giải nhanh giùm mk

0