K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔBAM vuông tại A và ΔBDM vuông tại D có 

BM chung

\(\widehat{ABM}=\widehat{DBM}\)(BM là tia phân giác của \(\widehat{ABD}\))

Do đó: ΔBAM=ΔBDM(cạnh huyền-góc nhọn)

Suy ra: BA=BD(hai cạnh tương ứng)

Xét ΔABD có BA=BD(cmt)

nên ΔABD cân tại B(Định nghĩa tam giác cân)

b) Ta có: ΔBAM=ΔBDM(cmt)

nên MA=MD(hai cạnh tương ứng)

Ta có: BA=BD(cmt)

nên B nằm trên đường trung trực của AD(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MA=MD(cmt)

nên M nằm trên đường trung trực của AD(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BM là đường trung trực của AD(Đpcm)

c) Xét ΔAME vuông tại A và ΔDMC vuông tại D có 

MA=MD(cmt)

\(\widehat{AME}=\widehat{DMC}\)(hai góc đối đỉnh)

Do đó: ΔAME=ΔDMC(cạnh góc vuông-góc nhọn kề)

Suy ra: ME=MC(hai cạnh tương ứng)

Xét ΔMEC có ME=MC(cmt)

nên ΔMEC cân tại M(Định nghĩa tam giác cân)

d) Ta có: ΔAME=ΔDMC(cmt)

nên AE=DC(hai cạnh tương ứng)

Ta có: BA+AE=BE(A nằm giữa B và E)

BD+DC=BC(D nằm giữa B và C)

mà BA=BD(cmt)

và AE=DC(cmt)

nên BE=BC

Xét ΔBEC có BE=BC(cmt)

nên ΔBEC cân tại B(Định nghĩa tam giác cân)

hay \(\widehat{BEC}=\dfrac{180^0-\widehat{EBC}}{2}\)(Số đo của một góc ở đáy trong ΔBEC cân tại B)(3)

Ta có: ΔBAD cân tại B(cmt)

\(\Leftrightarrow\widehat{BAD}=\dfrac{180^0-\widehat{ABD}}{2}\)(Số đo của một góc ở đáy trong ΔBDA cân tại B)

hay \(\widehat{BAD}=\dfrac{180^0-\widehat{EBC}}{2}\)(4)

Từ (3) và (4) suy ra \(\widehat{BAD}=\widehat{BEC}\)

mà \(\widehat{BAD}\) và \(\widehat{BEC}\) là hai góc ở vị trí đồng vị

nên AD//EC(Dấu hiệu nhận biết hai đường thẳng song song)

8 tháng 2 2022

cặc ko bít làm

Bài 1:Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).a, Chứng minh HB=HCb, Tính độ dài AH.c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.d, So sánh HD và HC.Bài 2:Cho tam giác ABC cân tại A có đường cao AH.a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.b, Cho BH= 8cm, AB= 10cm.Tính AH.c,, Gọi E là trung điểm...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.
d, So sánh HD và HC.
Bài 2:
Cho tam giác ABC cân tại A có đường cao AH.
a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.
b, Cho BH= 8cm, AB= 10cm.Tính AH.
c,, Gọi E là trung điểm của AC và G là giao điểm của BE và AH.Tính HG.
d, Vẽ Hx song song với AC, Hx cắt AB tại F. Chứng minh C, G, F thẳng hàng.
Bài 3
Cho tam giác ABC có CA= CB= 10cm, AB= 12cm.kẻ CI vuông góc với AB.Kẻ IH vuông góc với AC, IK vuông góc với BC.
a, Chứng minh IB= IC và tính độ dài CI
b, Chứng minh IH= IK.
c, HK// AC.
Bài 4:
Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H.Biết AB= 10cm, BH= 6cm.
a, Tính AH
b, tam giác ABH= tam giác ACH.
c, trên BA lấy D, CA lấy E sao cho BD= CE.Chứng minh tam giác HDE cân.
d, AH là trung trực của DE.
Bài 5:
Cho tam giác ABC cân tại AGọi D là trung điểm của BC.Từ D kẻ DE vuông góc với AB, DF vuông góc với AC. Chứng minh rằng:
a, tam giác ABD= tam giác ACD.
b, AD vuông góc với BC.
c, Cho AC= 10cm, BC= 12cm.Tính AD.
d, tam giác DEF cân.
Bài 6:
Cho tam giác ABC cân tại A có góc A < 900. kẻ BH vuông góc với AC ,CK vuông góc với AC.Gọi O là giao điểm của BH và CK.
a, Chứng minh tam giác ABH=Tam giác ACH.
b, Tam giác OBC cân.
c, Tam giác OBK = tam giác OCK.
d, trên nửa mặt phẳng bờ BC không chứa điểm A lấy I sao cho IB=IC.Chứng minh 3 điểm A, O, I thẳng hàng.
Bài 7
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, Tam giác ABD=tam giác ACE.
b, Tam giác BHC cân.
c, ED//BC
d, AH cắt BC tại K, trên HK lấy M sao cho K là trung điểm của HM.Chứng minh tam giác ACM vuông.
Bài 8
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, BD= CE.
b, Tam giác BHC cân.
c, AH là trung trực của BC
d, Trên tia BD lấy K sao cho D là trung điểm của BK.So sánh góc ECB và góc DKC.
Bài9
Cho tam giác ABC cân tại A.vẽ trung tuyến AM .từ M kẻ ME vuông góc với AB tại E.kẻ MF vuông góc với AC tại F.
a, chứng minh tam giác BEM= tam giác CFM.
b, AM là trung trực vủa EF.
c, từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường này cắt nhau tại D.Chứng minh A,M,D thẳng hàng.
Bài 10
Cho tam giác ABC cân tại AGọi M là trung điểm của AC.Trên tia đối MB lấy D sao cho DM= BM.
a, Chứng minh Tam giác BMC= tam giác DMA.Suy ra AD//BC.
b, tam giác ACD cân.
c. trên tia đối CA lấy E sao cho CA= CE.Chuwngsminh DC đi qua trung điểm I của BE.
Bài 11: Cho tam giác ABC cân tại A (AB = AC ), M là trung điểm của BC. Gọi D là điểm là điểm nằm giữa A và M. Chứng minh rằng:
a) AM là tia phân giác của góc A?
b) (ABD = (ACD.
c) (BCD là tam giác cân ?
Bài 12: Cho tam giác ABC vuông tại A , đường phân giác BD. Kẻ DE vuông góc với BC (E BC). Gọi F là giao điểm của BA và ED.

Giúp mk với các bạn đẹp trai xinh gái ai làm đúng mk tik cho 

Sắp hết Tết rùi giúp mk vs

9
26 tháng 4 2020

uôi dài v**

26 tháng 4 2020

ủa r viết ngần đó thì mất bn tg thek

28 tháng 3 2020
https://i.imgur.com/yXbooaP.jpg

a) Xét ΔABM vuông tại A và ΔDBM vuông tại D có

BM là cạnh chung

\(\widehat{ABM}=\widehat{DBM}\)(BM là tia phân giác của \(\widehat{ABC}\), D∈BC)

Do đó: ΔABM=ΔDBM(cạnh huyền-góc nhọn)

⇒AB=BD(hai cạnh tương ứng)

Xét ΔBAD có BA=BD(cmt)

nên ΔBAD cân tại B(định nghĩa tam giác cân)

b) Ta có: BA=BD(cmt)

nên B nằm trên đường trung trực của AD(tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: ΔBAM=ΔBDM(cmt)

⇒MA=MD(hai cạnh tương ứng)

hay M nằm trên đường trung trực của AD(tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BM là đường trung trực của AD(đpcm)

c) Ta có: ΔABM=ΔDBM(cmt)

\(\widehat{BAM}=\widehat{BDM}\)(hai góc tương ứng)

\(\widehat{BAM}=90^0\)(\(\widehat{BAC}=90^0\), M∈AC)

nên \(\widehat{BDM}=90^0\)

hay MD⊥BC

Xét ΔAEM vuông tại E và ΔDCM vuông tại D có

MA=MD(cmt)

\(\widehat{AME}=\widehat{DMC}\)(hai góc đối đỉnh)

Do đó: ΔAEM=ΔDCM(cạnh góc vuông-góc nhọn kề)

⇒ME=MC(hai cạnh tương ứng)

Xét ΔMEC có ME=MC(cmt)

nên ΔMEC cân tại M(định nghĩa tam giác cân)

d) Ta có: ΔAME=ΔDMC(cmt)

⇒AE=DC(hai cạnh tương ứng)

Ta có: AB+AE=BE(A nằm giữa B và E)

DB+DC=BC(D nằm giữa B và C)

mà AB=DB(cmt)

và AE=DC(cmt)

nên BE=BC

Xét ΔBEC có BE=BC(cmt)

nên ΔBEC cân tại B(định nghĩa tam giác cân)

\(\widehat{BEC}=\frac{180^0-\widehat{B}}{2}\)(số đo của một góc ở đáy trong ΔBEC cân tại B)(3)

Ta có: ΔBAD cân tại B(cmt)

\(\widehat{BAD}=\frac{180^0-\widehat{B}}{2}\)(số đo của một góc ở đáy trong ΔBAD cân tại B)(4)

Từ (3) và (4) suy ra \(\widehat{BEC}=\widehat{BAD}\)

\(\widehat{BEC}\)\(\widehat{BAD}\) là hai góc ở vị trí so le trong

nên AD//EC(dấu hiệu nhận biết hai đường thẳng song song)(đpcm)

29 tháng 3 2020

- Hình bên dưới .

a,- Ta có : BM là phân giác của góc ABC .

=> \(\widehat{B_1}=\widehat{B_2}\)

- Xét \(\Delta BAM\)\(\Delta BMD\) có :

\(\left\{{}\begin{matrix}\widehat{BAM}=\widehat{BDM}\left(=90^o\right)\\BM=BM\\\widehat{B_1}=\widehat{B_2}\left(cmt\right)\end{matrix}\right.\)

=> \(\Delta BAM\) = \(\Delta BMD\) ( Ch - cgn )

=> BA = BD , MA = MD ( cạnh tương ứng )

- Xét tam giác BAD có : BA = BD ( cmt )

=> Tam giác BAD cân tại B .

b, - Ta có : \(\left\{{}\begin{matrix}AB=BD\\MA=MD\end{matrix}\right.\) ( cmt )

=> BM là đường trung trực của AD .

c, - Ta có : \(\widehat{M_1}=\widehat{M_2}\) ( đối đính )

\(\widehat{M_3}=\widehat{M_4}\) ( \(\Delta BAM\) = \(\Delta BMD\) )

=> \(\widehat{M_1}+\widehat{M_3}=\widehat{M_2}+\widehat{M_4}\)

=> \(\widehat{BME}=\widehat{BMC}\)

- Xét \(\Delta BME\)\(\Delta BMC\) có :

\(\left\{{}\begin{matrix}\widehat{B_1}=\widehat{B_2}\left(cmt\right)\\BM=BM\\\widehat{BME}=\widehat{BMC}\left(cmt\right)\end{matrix}\right.\)

=> \(\Delta BME\) = \(\Delta BMC\) ( g - c - g )

=> EM = CM ( cạnh tương ứng )

- Xét tam giác MEC có : EM = CM ( cmt )

=> Tam giác MEC cân tại M .

29 tháng 3 2020

A E M C D B 1 1 2 2 3 4

- Ta có : Tam giác BAC cân tại B .

=> Góc BAD = ( 180o - góc ABD ) /2

CMTT ta được : Góc BEC = ( 180o - góc ABD ) /2

=> Góc BAD = Góc BEC .

Mà chúng ở vị trí đồng vị .

=> AD // EC

Bài 2: Cho tam giác nhọn ABC. Kẻ AH ⊥ BC (H∈BC). Biết AB = 13 cm; AH = 12cm và HC=16 cm. Tính chu vi tam giác ABC.Bài 3: Cho góc nhọn xOy và N là một điểm thuộc tia phân giác của góc xOy. Kẻ NAvuông góc với Ox (A ∈ Ox), NB vuông góc với Oy (B ∈ Oy)a) Chứng minh: NA = NB.b) Tam giác OAB là tam giác gì? Vì sao?c) Đường thẳng BN cắt Ox tại D, đường thẳng AN cắt Oy tại E.Chứng minh: ND = NE.d) Chứng minh ON ⊥ DEBài 4:...
Đọc tiếp

Bài 2: Cho tam giác nhọn ABC. Kẻ AH ⊥ BC (H∈BC). Biết AB = 13 cm; AH = 12
cm và HC=16 cm. Tính chu vi tam giác ABC.
Bài 3: Cho góc nhọn xOy và N là một điểm thuộc tia phân giác của góc xOy. Kẻ NA
vuông góc với Ox (A ∈ Ox), NB vuông góc với Oy (B ∈ Oy)
a) Chứng minh: NA = NB.
b) Tam giác OAB là tam giác gì? Vì sao?
c) Đường thẳng BN cắt Ox tại D, đường thẳng AN cắt Oy tại E.
Chứng minh: ND = NE.
d) Chứng minh ON ⊥ DE
Bài 4: Cho tam giác ABC cân tại A, Kẻ AH⊥BC (H ∈ BC)
a) Chứng minh góc ∠BAH = ∠CAH
b) Cho AH = 3 cm, BC = 8 cm. Tính độ dài AC.
c) Kẻ HE ⊥ AB, HD ⊥ AC . Chứng minh AE = AD.
d) Chứng minh ED // BC.
Bài 5: (3,5 điểm)
Cho ∆ABC vuông tại A. Tia phân giác của góc B cắt AC tại D, DN⊥BC tại N.
a) Chứng minh ∆DBA = ∆DBN.
b) Gọi M là giao điểm của hai đường thẳng ND và BA. Chứng minh ∆BMC cân.
c) Chứng minh AB + NC &gt; 2.DA.
Bài 6: (3,5 điểm)
Cho ∆ABC vuông tại A (AB &lt; AC). Tia phân giác của góc ABC cắt AC tại D,
DN⊥BC tại N.
a) Chứng minh ∆ABD = ∆NBD.

3

b) Gọi K là giao điểm của hai đường thẳng BA và ND. Chứng minh ∆BKC cân.
Vẽ EH ⊥BC tại H. Chứng minh BC + AH &gt; EK + AB.
Bài 7: (3,5 điểm) Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.
a) Tính độ dài đoạn BC.
b) Vẽ BCAH tại H. Trên HC lấy D sao cho HD = HB.
Chứng minh: AB = AD.
c) Trên tia đối của tia HA lấy điểm E sao cho EH = AH. Chứng minh: ACED .
d) Chứng minh BD &lt; AE.
Bài 5: (3 điểm) Cho ΔABC vuông tại A, kẻ phân giác BD của Bˆ (D thuộc AC), kẻ
BDAH (H thuộc BD), AH cắt BC tại E.
a) Chứng minh: ΔBHA = ΔBHE.
b) Chứng minh: BCED .
c) Chứng minh: AD &lt; DC.
d) Kẻ BCAK (K thuộc BC). Chứng minh: AE là phân giác của KAˆC .
Bài 4: (3,5 điểm) Cho ΔABC vuông tại A, đường trung tuyến CM.
a) Cho biết BC = 10cm, AC = 6cm. Tính độ dài đoạn thẳng AB, BM.
b) Trên tia đối của tia MC lấy điểm D sao cho MD = MC.
Chứng minh rằng ΔMAC = ΔMBD và AC = BD.
c) Chứng minh rằng AC + BC &gt; 2CM.
d) Gọi K là điểm trên đoạn thẳng AM sao cho AM
3
2
AK

. Gọi N là giao điểm của

CK và AD, I là giao điểm của BN và CD. Chứng minh rằng: CD = 3ID.

giúp mk với

1
10 tháng 3 2022

tú wibu:)