Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta DAC\)và \(\Delta BAE\) có:\(DA=BA;\widehat{DAC}=\widehat{EAB}\left(=60^0+\widehat{BAC}\right);AC=AE\Rightarrow\Delta DAC=\Delta BAE\left(c.g.c\right)\Rightarrow\widehat{DCA}=\widehat{AEB}\)
Ta có:
\(\widehat{BIC}=\widehat{IEC}+\widehat{ECI}=\widehat{IEC}+\left(\widehat{ICA}+\widehat{ACE}\right)=\left(\widehat{IEC}+\widehat{AEI}\right)+\widehat{ACE}=\widehat{AEC}+\widehat{ACE}=60^0+60^0=120^0\)(Vì \(\widehat{AEB}=\widehat{ACI}\))
\(\Rightarrow\widehat{KIB}=60^0\Rightarrow\Delta KIB\)là tam giác đều \(\Rightarrow\widehat{KBI}=\widehat{BKI}=\widehat{BIK}=60^0;KB=IB\).
Ta có:\(\widehat{KBD}=\widehat{ABD}-\widehat{ABK}=60^0-\widehat{ABK}=\widehat{KBI}-\widehat{KBA}=\widehat{ABI}\)
Xét \(\Delta DKB\) và \(\Delta AIB\) có: \(DB=AB;\widehat{DBK}=\widehat{ABI}\left(cmt\right);KB=IB\Rightarrow\Delta DKB=\Delta AIB\left(c.g.c\right)\)
\(\Rightarrow\widehat{BIA}=\widehat{DKB}=180^0-60^0=120^0\)
\(\Rightarrow\widehat{AIE}=\widehat{AID}=120^0-60^0=60^0\) hay IA là phân giác \(\widehat{DIE}\).
Sai đề rồi bạn.D,E phải nằm ở nửa mặt phẳng nào chứ???
Tgiac ABC co AB = AC => tgiac ABC can tai A => goc ABC = goc ACB
a) Xet tgiac ABD va tgiac ACD co:
AB = AC (gt)
goc ABD = goc ACD (cmt)
DB = DC (gt)
suy ra: tgiac ABD = tgiac ACD
b) Tgiac ABC can tai A co AD la trung tuyen
=> AD dong thoi la phan giac
Xet tgiac ABI va tgiac ACI co:
AB = AC (gt)
goc BAI = goc CAI
AI: chung
suy ra: tgiac ABI = tgiac ACI (c.g.c)
=> BI = CI
a, Xét tam giác ABE và tam giác ADC có:
AB = AD
góc BAE = góc DAC
AE=AC
==> tam giác ABE = tam giác ADC ( c.g.c )
a) (Nếu cj biết vẽ hình rồi thì thôi nha chị, còn nếu chị chưa vẽ được hình thì chị có thể nhắn tin với em ạ )
Ta có : tam giác ABE và tam giác ADC có :
AB = AD
AC=AE
góc DAC = góc BAE ( cũng = góc BAC t60 độ )
=> tam giác ABE = tam giác ADC ( c . g . c )
=> góc AEB = góc ACD ( 2 góc tương ứng) ; BE = CD
Gọi F là tia đối tia BI sao cho DI=IF
=> tam giác DIF đều do góc DIB = 60 độ
Xét tam giác DBF và tam giác DAI có :
DF = DI , DB = DA , góc FDB = góc IDA = 60 độ - góc BDI
Vậy ta có : ID = IF = IB + FB = IB + IA ( đpcm )
b) Ta có : AM2 = \(\frac{AB^2+AC^2}{2}-\frac{BC^2}{4}\)
Áp dụng định lí cosin trong tam giác ABM ta có :
AM2 =BA2 + BM2 -2.BA . BM .cos B
= AB2 + BM2 -2.AB . BM . \(\frac{AB^2+BC^2-AC^2}{2.AB.BC}\)
= AB2 + \(\frac{BC^2}{4}-2.BM.\frac{AB^2+BC^2-AC^2}{2.2.BM}\)
= \(\frac{AB^2+AC^2}{2}-\frac{BC^2}{4}\)
<=> AB2 + AC2 =2.AM2 + \(\frac{BC^2}{2}\)