Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow ab\left(\dfrac{1}{b+c}-\dfrac{1}{a+c}\right)+bc\left(\dfrac{1}{a+c}-\dfrac{1}{a+b}\right)+ca\left(\dfrac{1}{a+b}-\dfrac{1}{b+c}\right)=0\)
\(\Leftrightarrow\dfrac{ab\left(a-b\right)}{\left(b+c\right)\left(a+c\right)}+\dfrac{bc\left(b-c\right)}{\left(a+b\right)\left(a+c\right)}+\dfrac{ca\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}=0\)
\(\Leftrightarrow\dfrac{ab\left(a^2-b^2\right)+bc\left(b^2-c^2\right)+ca\left(c^2-a^2\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\) hay tam giác cân
Lời giải:
Ta có : \(\frac{ab}{b+c}+\frac{bc}{c+a}+\frac{ca}{a+b}=\frac{ab}{c+a}+\frac{bc}{a+b}+\frac{ca}{b+c}\)
\(\Leftrightarrow ab\left(\frac{1}{b+c}-\frac{1}{c+a}\right)+bc\left(\frac{1}{c+a}-\frac{1}{a+b}\right)+ca\left(\frac{1}{a+b}-\frac{1}{b+c}\right)=0\)
\(\Leftrightarrow \frac{ab(a-b)}{(b+c)(c+a)}+\frac{bc(b-c)}{(a+b)(a+c)}+\frac{ca(c-a)}{(b+a)(b+c)}=0\)
\(\Leftrightarrow ab(a^2-b^2)+bc(b^2-c^2)+ca(c^2-a^2)=0\)
\(\Leftrightarrow ab(a^2-b^2)-bc[(a^2-b^2)+(c^2-a^2)]+ca(c^2-a^2)=0\)
\(\Leftrightarrow (a^2-b^2)(ab-bc)+(ca-bc)(c^2-a^2)=0\)
\(\Leftrightarrow (ba+b^2)(a-b)(a-c)-(a-b)(a-c)(c^2+ca)=0\)
\(\Leftrightarrow (a-b)(a-c)(b-c)(a+b+c)=0\)
Vì $a,b,c$ là ba cạnh tam giác nên \(a+b+c\neq 0\Rightarrow (a-b)(a-c)(b-c)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\). Do đó tam giác $ABC$ là tam giác cân.
Lời giải:
Vì $a+b+c=1$ nên:
\(a^2+b^2+abc-1=(a+b)^2-2ab+abc-1\)
\(=(a+b)^2-1+ab(c-2)=(1-c)^2-1+ab(c-2)\)
\(=-c(2-c)+ab(c-2)=c(c-2)+ab(c-2)=(c+ab)(c-2)\)
Do đó:
\(\frac{c+ab}{a^2+b^2+abc-1}=\frac{c+ab}{(c+ab)(c-2)}=\frac{1}{c-2}\)
Hoàn toàn tương tự với các phân thức còn lại, suy ra:
\(\frac{c+ab}{a^2+b^2+abc-1}+\frac{a+bc}{b^2+c^2+abc-1}+\frac{b+ac}{a^2+c^2+abc-1}=\frac{1}{c-2}+\frac{1}{a-2}+\frac{1}{b-2}=\frac{(a-2)(b-2)+(b-2)(c-2)+(c-2)(a-2)}{(a-2)(b-2)(c-2)}\)
\(=\frac{ab+bc+ac-4(a+b+c)+12}{(a-2)(b-2)(c-2)}=\frac{ab+bc+ac+8}{(a-2)(b-2)(c-2)}\)
Ta có đpcm.