K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

Bạn tự vẽ hình nhé ^^

1. ta có AC=CM ; BC=CE => tứ giác ABME là hình bình hành ( hai đường chéo cắt nhau tại trung điểm của mỗi đường)

2. Ta có ME=AB

mà AB=AC=CM => CM=ME (=AB)

=> tam giác MEC  cân tại M

3.  Xét tam giác AMN có 

(1) AB=BN ; AC=CM => BC // MN (đường thẳng đi qua trung điểm của hai cạnh trong một tam giác sẽ song song với cạnh còn lại. Đường TB của tam giác) => BCMN là hình thang

(2) Ta có BN=CM (g.thiết) 

từ (1) và (2) => tứ giác BCMN là hình thang cân (vì có hai cạnh bên là BN và CM bằng nhau)

4. Xét tam giác BCM và BNC có 

CB: chung

BM=CN (hai đg chéo hình thang cân) 

BN=CM (giả thiết)

=> tam giác BCM=BNC

=> Góc MBC=góc BCN

mà góc FCE =gócBCN (đối đỉnh)

       gócMBC= FEC (so le  trong)

=.> góc FEC= FCE

=>tam giác EFC cân tại F

=> FE=FC (1)

theo CM ý b) ta có ME=MC (2)

từ 1 và 2 suy ra FM là đường trung trực của EC => FM vuông góc với  EC => FM vuông goc với MN tại M

Mà MN//EC

=> tam giác MNF vuông tại M

26 tháng 12 2019

23456+9867[67453+987875

26 tháng 12 2019

gọi L là giao điểm của BD và AC.

Có: BL=LD, AL=LC =>  ABCD là hình bình hành.

Lại có ^A=90 =>  ABCD là HCN (ĐPCM)

b/ xét tam giác BCI và IED có:

BC=DE(.....)

^BCI = ^IDE=90 độ

CI = ID (.....)

=> tg BCI = tg IDE (c,g,c)

=> BI = IE (ĐPCM)

5 tháng 9 2019

https://olm.vn/thanhvien/trungkienhy79

https://olm.vn/thanhvien/nhu140826

Vô trang cá nhân của e ẽ thấy tình yêu TRONG SÁNG của 2 anh chị trên

5 tháng 9 2019

A B C D M N 1 2

a) Ta có: \(\hept{\begin{cases}AB=\frac{1}{2}DC\left(gt\right)\\MC=\frac{1}{2}DC\left(gt\right)\end{cases}}\)

\(\Rightarrow AB=MC\)

MÀ \(AB//MC\)( vì \(AB//MC\))

\(\Rightarrow ABCM\)là hình bình hành (dhnb )

b) Tại có: \(N\)là điểm đối xứng của A qua DC (gt )

\(\Rightarrow AN\)là đường trung trực của DC 

\(\Rightarrow AN\perp DC\)

Hay \(AN\perp DM\) (vì M thuộc DC )

\(\Rightarrow AMND\)là hình thoi ( dhnb )

5 tháng 9 2019

https://olm.vn/thanhvien/trungkienhy79

https://olm.vn/thanhvien/nhu140826

Vô trang cá nhân của e ẽ thấy tình yêu TRONG SÁNG của 2 anh chị trên

5 tháng 9 2019

https://olm.vn/thanhvien/trungkienhy79

https://olm.vn/thanhvien/nhu140826

Vô trang cá nhân của e ẽ thấy tình yêu TRONG SÁNG của 2 anh chị trên

6 tháng 2 2019

a)xét ΔACB và ΔMCE,ta có:

AC = CM(gt)

EC = CB(gt)

^ECM = ^ BCA(2 góc đối đỉnh)

=> ΔABC = ΔMCE(c.g.c)

nên EM=AB(2 cạnh tương ứng) (1)

^CEM=^CBA(2 góc tương ứng)

nên : EM//AB ( 2 góc này ở vị trí so le trong) (2)

xét tứ giác ABME , ta có :

EM//AB (cmt)

EM=AB (cmt)

=> tứ giác ABME là hình bình hành

cách 2 :

tứ giác ABME, ta có :

BE cắt AM tại C

CA = CM (gt)

CE = CB (gt)

suy ra : tứ giác ABME là hình bình hành.

b)xét Δ MEC,ta có:

AB=ME (cmt)

AB=AC (Δ ABC cân tại A)

AC=MC (gt)

suy ra : MC=ME

nên : Δ MEC cân tại M.

c)Ta có EM=AB mà AB=BN(N là đối xứng của điểm A qua B)

suy ra EM=BN(1)

EM//AB(cmt) mà A thuộc BN(gt)

nên EM//BN(2)

từ (1) và (2), suy ra :tứ giác EBNM là hình bình hành

nên : EB // MN

hay : CB // MN (C thuộc EB)

=> tứ giác CBNM là hình thang

ta lại có:

^MNB=^CBA(2 góc đồng vị)

^CMN=^ACB (đồng vị)

mà ^CBA=^ACB (tam giác ABC cân tại A)

suy ra:^MNB=^CMN

nên : hình thang CBNM là hình thang cân

d)ta có :

xét ΔMBC và ΔNCB, ta có :

MC = NB ; MB = NC (CBNM là hình thang cân )

BC cạnh chung.

=> ΔMBC = ΔNCB (c – c – c)

=> ^B1 = ^C1

Mà : ^B1 = ^E1 (so le trong)

^C1 = ^C2 (đối đỉnh)

=> ^E1 = ^C2 => ΔEFC cân tại F => FE = FC

Xét đoạn EC, ta có :

FE = FC (cmt)

ME = MC (cmt)

=> FM là đường trung trực đoạn EC

=>FM _|_ EC

Mặt khác : EC // MN

=> FM _|_ MN tại M

Vậy : D MNF vuông tại M.

6 tháng 2 2019

a. ta có AC=CM ; BC=CE => tứ giác ABME là hình bình hành ( hai đường chéo cắt nhau tại trung điểm của mỗi đường)

b. Ta có ME=AB

mà AB=AC=CM => CM=ME (=AB)

=> tam giác MEC cân tại M

c. Xét tam giác AMN có

(1) AB=BN ; AC=CM => BC // MN (đường thẳng đi qua trung điểm của hai cạnh trong một tam giác sẽ song song với cạnh còn lại. Đường TB của tam giác) => BCMN là hình thang

(2) Ta có BN=CM (g.thiết)

từ (1) và (2) => tứ giác BCMN là hình thang cân (vì có hai cạnh bên là BN và CM bằng nhau)

1 tháng 11 2020

a) Chứng minh : BHCK là hình bình hành 

Xét tứ giác BHCK có :                MH = MK = HK/2

                                                    MB = MI = BC/2 

Suy ra : BHCK là hình bình hành 

b) BK vuông góc AB và CK vuông góc AC

Vì BHCK là hình bình hành ( cmt ) 

Suy ra : BK // HC và CK // BH ( tính chất hình bình hành )

mà CH vuông góc AB = F và BH vuông góc AC = E ( gt )

Suy ra : BK vuông góc AB và CK vuông góc AC ( Từ vuông góc đến // )

c) Chứng minh : BIKC là hình thang cân 

Vì I đối xứng với H qua BC nên BC là đường trung bình của HI 

Mà M thuộc BC    Suy ra : MH = MI ( tính chất đường trung trực ) 

mà MH = MK = HK/2 (gt)

Suy ra : MI = MH = MK = 1/2 HC 

Suy ra : Tam giác HIK vuông góc tại I 

mà BC vuông góc HI (gt)

Suy ra : IC // BC 

Suy ra : BICK là hình thang  (1) 

Ta có : BC là đường trung trực của HI (cmt) 

Suy ra : CI = CH 

1 tháng 11 2020

Tiếp ý c 

mà CH = BK ( vì BKCH là hình bình hành) 

Suy ra : BK = CI (2)

Từ ( 1) và (2) Suy ra : BICK là hình thang cân (dấu hiệu nhận biết )

d) Giả sử GHCK là hình thang cân 

Suy ra : Góc HCK = Góc GHC

mà góc HCK + góc C1 = 90 độ 

      góc GHC + góc C2 = 90 độ 

Suy ra : Góc C1= góc C2 

Suy ra : CF là đường cao đồng thời là đường phân giác của tam giác ABC 

Suy ra : Tam giác ABC cân tại C 

Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BCa) Chứng minh : Tứ giác EHMN là hình thang cânb) Chứng minh: HE ⊥ HNc) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoid) Chứng minh: AM, EN,BF và KC đồng quyBài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ...
Đọc tiếp

Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC

a) Chứng minh : Tứ giác EHMN là hình thang cân

b) Chứng minh: HE ⊥ HN

c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi

d) Chứng minh: AM, EN,BF và KC đồng quy

Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ BD)

a) Chứng minh: Tứ giác AFCE là hình bình hành

b) Cho AF cắt BC tại M, CE cắt AD tại N. Chứng minh: M,O,N thẳng hàng

c) Lấy K đối xứng C qua E. Xác định vị trí của E trên OD để tứ giác AKDO là hình bình hành

d) Lấy I đối xứng với A qua D, lấy H đối xứng A qua B. Hình Bình hành ABCD phải có thêm điều kiện gì để I và H đối xứng với nhau qua đường thẳng AC?

MÌNH CẦN GẤP!! CÁC BẠN GIÚP MÌNH NHA!!! 

0
Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BCa) Chứng minh : Tứ giác EHMN là hình thang cânb) Chứng minh: HE ⊥ HNc) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoid) Chứng minh: AM, EN,BF và KC đồng quyBài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE...
Đọc tiếp

Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC

a) Chứng minh : Tứ giác EHMN là hình thang cân

b) Chứng minh: HE ⊥ HN

c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi

d) Chứng minh: AM, EN,BF và KC đồng quy

Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ BD)

a) Chứng minh: Tứ giác AFCE là hình bình hành

b) Cho AF cắt BC tại M, CE cắt AD tại N. Chứng minh: M,O,N thẳng hàng

c) Lấy K đối xứng C qua E. Xác định vị trí của E trên OD để tứ giác AKDO là hình bình hành

d) Lấy I đối xứng với A qua D, lấy H đối xứng A qua B. Hình Bình hành ABCD phải có thêm điều kiện gì để I và H đối xứng với nhau qua đường thẳng AC?

0