Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{2011}{1}+\frac{2010}{2}+...+\frac{1}{2011}\)
\(=\left(\frac{2011}{1}+1\right)+\left(\frac{2010}{2}+1\right)+...+\left(\frac{1}{2011}+1\right)-2011\)
\(=\frac{2012}{1}+\frac{2012}{2}+...+\frac{2012}{2011}+\frac{2012}{2012}-2012\)
\(=2012.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)\)
Do đó: \(\frac{B}{A}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{2012.\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2012}\right)}\)
\(=\frac{1}{2012}\)
mik làm câu A thôi nha
ta có :
1 - 2009/2010 = 1/2010
1 - 2010/2011 = 1/2011
Phần bù nào bé thì phân số đó lớn .
Vì 1/2010 > 1/2011
Nên 2009/2010 > 2010/2011
Ta thấy hiệu giữa mẫu số và tử số của hai phân số bằng nhau ( = 1 )
Để so sánh hai phân số, ta so sánh các hiệu.
\(1-\frac{2009}{2010}\)và \(1-\frac{2010}{2011}\)
Ta có :
\(1-\frac{2009}{2010}=\frac{2010}{2010}-\frac{2009}{2010}=\frac{1}{2010}\)
\(1-\frac{2010}{2011}=\frac{2011}{2011}-\frac{2010}{2011}=\frac{1}{2011}\)
Ta thấy :
\(\frac{1}{2010}>\frac{1}{2011}\)
Hay :
\(1-\frac{2009}{2010}>1-\frac{2010}{2011}\)
Vậy \(\frac{2009}{2010}< \frac{2010}{2011}\)
Ta có: A=\(\frac{1}{2011}+\frac{2}{2010}+\frac{3}{2009}+...+\frac{2009}{3}+\frac{2010}{2}+\frac{2011}{1}\)
=> A=\(\frac{2012-2011}{2011}+\frac{2012-2010}{2010}+...+\frac{2012-2}{2}+\frac{2012-1}{1}\)
=>A=\(\frac{2012}{2011}-1+\frac{2012}{2010}-1+...+\frac{2012}{2}-1+2012-1\)
=>A=\(2012\cdot\left(\frac{1}{2011}+\frac{1}{2010}+...+\frac{1}{2}\right)+1\)
=> A= \(2012\cdot\left(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{2}\right)\)
ko biết có đúng hay ko nựa sai thì bỏ qua nha ^^
Ta có:4=1+1+1+1=\(\frac{2009}{2009}+\frac{2010}{2010}+\frac{2011}{2011}+\frac{2008}{2008}\)
\(\frac{2008}{2009}+\frac{1}{2009}+\frac{2009}{2010}+\frac{1}{2010}+\frac{2010}{2011}+\frac{1}{2011}+\frac{2008}{2008}\)
Xét \(A=\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2008}\)
\(=\frac{2009}{2009}+\frac{2010}{2010}+\frac{2011}{2011}+\frac{2008}{2008}+\frac{1}{2008}+\frac{1}{2008}+\frac{1}{2008}\)
xét \(\frac{1}{2009}< \frac{1}{2008};\frac{1}{2010}< \frac{1}{2008};\frac{1}{2011}< \frac{1}{2008}\)
\(\Rightarrow4< A\)
b,Ta có
\(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)
\(\Rightarrow P>Q\)
\(A=\frac{-10}{20}+\frac{-10}{30}+\frac{-10}{42}+\frac{-10}{56}+\frac{-10}{72}+\frac{-10}{90}+\frac{-10}{110}\)
\(=-10\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\right)\)
\(=-10\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\right)\)
\(=-10\left(\frac{1}{4}-\frac{1}{11}\right)\)
\(=\frac{-35}{22}\)
\(A=\left(1-\frac{1}{2010}\right)\left(1-\frac{2}{2010}\right)...\left(1-\frac{2010}{2010}\right)\left(1-\frac{2011}{2010}\right)\)
\(=\left(1-\frac{1}{2010}\right)\left(1-\frac{2}{2010}\right)...0\left(1-\frac{2011}{2010}\right)\)
\(=0\)
ai trả lời câu hỏi của nguyễn quỳnh trang tao cho