K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2017

Câu hỏi của không cần biết - Toán lớp 8 - Học toán với OnlineMath

2 tháng 3 2022

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2016}\)

\(\Rightarrow\dfrac{bc+ac+bc}{abc}=\dfrac{1}{2016}\)

\(\Rightarrow\dfrac{bc+ac+ab}{abc}=\dfrac{1}{a+b+c}\)

\(\Rightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(\Rightarrow ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc=abc\)

\(\Rightarrow ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a=-b\) hay \(b=-c\) hay \(c=-a\)
-Vậy trong ba số a,b,c tồn tại 2 số đối nhau.

Y
6 tháng 2 2019

Đặt x = a - b, y = b - c, z = c - a

\(\Rightarrow\left\{{}\begin{matrix}x+y+z=0\\ay+bz+cx=ab-ac+bc-ab+ac-bc=0\end{matrix}\right.\)

+ \(ay+bz+cx=0\)

\(\Rightarrow\dfrac{1}{y}\left(\dfrac{a}{y}+\dfrac{b}{z}+\dfrac{c}{x}\right)=0\)

\(\Rightarrow\dfrac{a}{y^2}+\dfrac{bx}{xyz}+\dfrac{cz}{xyz}=0\)

\(\Rightarrow\dfrac{a}{y^2}=\dfrac{-bx-cz}{xyz}\)

+ Tương tự : \(\dfrac{b}{z^2}=\dfrac{-cy-ax}{xyz}\)

\(\dfrac{c}{x^2}=\dfrac{-az-by}{xyz}\)

Do đó : \(\dfrac{a}{y^2}+\dfrac{b}{z^2}+\dfrac{c}{x^2}=\dfrac{-a\left(x+z\right)-b\left(x+y\right)-c\left(y+z\right)}{xyz}\)

\(=\dfrac{ay+bz+cx}{xyz}\) ( do x + y + z = 0)

\(=0\) ( do ay + bz + cx = 0 )

17 tháng 7 2017

Theo bài ra ta có:

\(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(=\dfrac{bc+ac+ab}{abc}=bc+ac+ab\)

Ta lại có:

\(\left(a.b.c-1\right)+\left(a+b+c\right)-\left(bc+ca+ab\right)=0\)

\(=>\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)

\(=>\left[{}\begin{matrix}a-1=0\\b-1=0\\c-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\)

CHÚC BẠN HỌC TỐT.........

18 tháng 7 2017

\(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\\ \Leftrightarrow a+b+c=\dfrac{bc+ac+ab}{abc}\\ \Leftrightarrow a+b+c=bc+ac+ab\\ \Leftrightarrow a+b+c-ab-bc-ac+abc-1=0\\ -a\left(b-1\right)-c\left(b-1\right)+ac\left(b-1\right)+\left(b-1\right)=0\\ \Leftrightarrow\left(b-1\right)\left(-a-c+ac+1\right)=0\\ \Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\)

7 tháng 12 2017

Đây nhé: https://olm.vn/hoi-dap/question/77888.html

24 tháng 4 2018

please help me

i need your help