Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=( 5+5^2+5^3)+....+(5^2011+5^2012+5^2013). Nhóm 3 số 1 bộ
S=5(1+5+5^2)+.....+5^2011(1+5+5^2)
S=5.31+.....+5^2011.31
S=31(5+....+5^2011) chia hết cho 31(đpcm)
Tick nhé.
Tiện thể cho mình hỏi cách viết số mũ lên cao thế nào vậy
\(3,1+5^2+5^4+...+5^{26}\)
\(=\left(1+5^2\right)+\left(5^4+5^6\right)+...+\left(5^{24}+5^{26}\right)\)
\(=\left(1+5^2\right)+5^4\left(1+5^2\right)+...+5^{24}\left(1+5^2\right)\)
\(=26+5^4.26+...+5^{24}.26\)
\(=26\left(5^4+...+5^{24}\right)\)
Vì \(26⋮26\)
\(\Rightarrow26\left(5^4+...+5^{24}\right)⋮26\)
\(\Rightarrow1+5^2+5^4+...+5^{26}⋮26\)
\(4,1+2^2+2^4+...+2^{100}\)
\(=\left(1+2^2+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(=\left(1+2^2+2^4\right)+....+2^{98}\left(1+2^2+2^4\right)\)
\(=21+2^6.21...+2^{98}.21\)
\(=21\left(2^6+...+2^{98}\right)\)
Có : \(21\left(2^6+...+2^{98}\right)⋮21\)
\(\Rightarrow1+2^2+2^4+...+2^{100}⋮21\)
bài 4 : a. 2002 ^2003 = 2002 ^2000 . 2002^3=(2002^4).^500 . 2002^3
=(...6).(...8)=..8
2003^2004=(2003^4)^501 = ...1
2002^2003 + 2003^2004=...1+...8 =..9 ko chia hết cho 2
b.3^4n -6 =(...1) - (..6) = ...5 chia hết cho 5
c.2001^2002-1=(...1).(..1) =...0 chia hết cho 10
nếu đúng nhớ tick cho mình nhé
a) \(1+2+...+2^{2011}\)
\(=2^0+2+...+2^{2010}+2^{2011}\)
\(=2^0\left(1+2\right)+...+2^{2010}\left(1+2\right)\)
\(=2^0\cdot3+...+2^{2010}\cdot3\)
\(=3\left(2^0+...+2^{2010}\right)⋮3\left(đpcm\right)\)
Các câu còn lại tương tự, dài quá
a) Dãy trên có : 2012 lũy thừa và 2012 \(⋮\)2 =< có thể ghpes thành các nhóm, mỗi nhóm 2 lũy thừa.
Ta có :
A = ( 1 + 2 ) + ( 22 + 23 ) + ...+( 22010 + 22011 )
=> A = 3 + 22 . ( 1 + 2 ) +...+ 22010. ( 1 + 2 )
=> A = 3 . ( 1 + 22 +...+ 22010 ) => A chia hết cho 3
- Để chứng minh chia hết cho 5 thì ghép 4 cái liền. ( làm tương tự trên )
b,
Ta có :
B = 1 + 7 +...+ 7101
=> B = ( 1 + 72 ) + ( 7 + 73 ) +...+ ( 799 + 7101 )
=> B = 50 + 72.( 1 + 72 ) +...+ 799. ( 1 + 72 )
=> B = 50 + 72.50 +...+799.50
=> B = 50.( 1 + 72 +...+ 799 ) => B chia hết cho 50
Dưới tương tự...
Bài giải nè: