K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2021

Để \(\frac{3n+7}{3n-1}\inℕ^∗\)thì \(3n+7⋮3n-1\)

\(\Leftrightarrow3n-1+8⋮3n-1\Leftrightarrow8⋮3n-1\)

\(\Rightarrow3n-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

3n - 11-12-24-48-8
3n203-15-39-7
n2/3 ktm1-1/3 ktm5/3 ktm-13-7/3 ktm 
25 tháng 4 2021

Cảm ơn✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓ nhé! Love you

26 tháng 3 2015

a.\(\frac{3.\left(n-12\right)+42}{3n-12}=3+\frac{42}{3n-12}\)

Vì 3 là số nguyên => \(\frac{42}{3n-12}\)cũng là số nguyên

=> 3n-12 là ước của 42 mà Ư(42)=1;2;3;6;7;42;-1;-2;-3;-6;-7;-42

Vì n là số nguyên

=> \(n\in\)( 5;6;18;3;2;-10)

b. \(\frac{3\left(n+7\right)-16}{n+7}=3-\frac{16}{n+7}\)

Vì 3 là số nguyên => \(\frac{16}{n+7}\)cũng là số nguyên 

=> n+7 là ước của 16 mà Ư(16)=1;2;4;16;-1;-2;-4;-16

=>\(n\in\)(-6;-5;-3;9;-8;-9;-11;-23)

11 tháng 2 2020

a) Để phân số \(\frac{12}{3n-1}\)có giá trị là 1 số nguyên

\(\Rightarrow\)12\(⋮\)3n-1

\(\Rightarrow3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)

Tiếp theo bạn tìm số nguyên n như thường, nếu có giá trị là phân số thì bỏ nên bạn tự làm nhé!

b) Để phân số \(\frac{2n+3}{7}\)có giá trị là 1 số nguyên 

\(\Rightarrow\)2n+3\(⋮\)7

\(\Rightarrow\)2n+3=7k  

\(\Rightarrow n=\frac{7k-3}{2}\)

23 tháng 6 2020

A = 3n - 6061/x - 2020

để A nguyên

=> 3x - 6061 chia hết cho x - 2020

=> 3x - 6060 - 1 chia hết cho x - 2020

=> 1 chia hết cho x - 2020

=> x - 2020 thuộc {-1; 1}

=> x - 2020 thuộc {2019; 2021}

23 tháng 6 2020

Trả lời :

\(A=\frac{3n-6061}{n-2020}\)

\(A=\frac{3\left(n-2020\right)-1}{n-2020}\)

\(A=3-\frac{1}{n-2020}\)

Để A\(\inℤ\)=> \(\frac{1}{n-2020}\inℤ\)

\(\Rightarrow1⋮n-2020\)

\(\Rightarrow\orbr{\begin{cases}n=2021\\n=2019\end{cases}}\)

4 tháng 8 2015

a)Có\(\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=3+\frac{21}{n-4}\)

Để \(3+\frac{21}{n-4}\)\(\in z\) mà \(3\in z\Rightarrow\frac{21}{n-4}\in z\)

\(\Rightarrow\)n-4 \(\in\)Ư(21)={-1;1;-3;3;-7;7;-21;21}

ta có bảng sau:

n - 4  -1     1    -3     3    -7     7   -21   21 
n   3   5   1   7  -3  11 -17  26

Vậy,n\(\in\){-17;-3;1;3;5;7;11;26} 

b)có:\(\frac{6n+5}{2n-4}=\frac{6n-12+17}{2n-4}=\frac{3\left(2n-4\right)+17}{2n-4}=3+\frac{17}{2n-4}\)

Để \(3+\frac{17}{2n-4}\)\(\in z\) mà \(3\in z\Rightarrow\frac{17}{2n-4}\in z\)

\(\Rightarrow\)2n-4 \(\in\)Ư(17)={-1;1;-17;17}

ta có bảng sau:

 2n-4   -1     1    -17   17  
   n 1,5 2,5 -6,5 10,5

 theo bảng trên không có giá trị n thỏa mãn ĐK n\(\in z\)

Vậy, không có giá trị nguyên n nào để \(\frac{6n+5}{2n-4}\in z\)
 

 

21 tháng 3 2018

Cho biểu thức A=\(\frac{2n-1}{3-n}\)tìm giá trị nguyên của n để A là 1 số nguyên

13 tháng 4 2021

b) có n thuộc Z =>3n+1 thuộc Z, n-3 thuộc Z

A=3n+1 / n-3  có giá trị nguyên <=> 3n+1 chia hết cho n-3

                                                   <=>3n-9+10 chia hết cho n-3

                                                    <=>3(n-3)+10 chia hết cho n-3

                                                    <=>10 chia hết cho n-3  ( vì 3(n-3) chia hết cho n-3)

                                                     <=>n-3 thuộc Ư (10)


 

n-31-12-25-510-10
n42518-213-7

vậy tất cả các giá trị nguyên n đều thỏa mãn

n thuộc {4;2;5;1;8;-2;13;-7}

12 tháng 4 2021

b,do n thuộc Z =>3n+1 thuộc Z

     n-3 thuộc z 

n-3 không bằng 0

<=>n-3 không bằng 0 và  3n+1 thuộc Z  thì A=\(\frac{3n+1}{n-3}\)là số nguyên (thuộc Z)

21 tháng 4 2020

1, để B nguyên

=> n + 7 ⋮ 3n - 1

=> 3n + 21 ⋮ 3n - 1

=> 3n - 1 + 22 ⋮ 3n - 1

=> 22 ⋮ 3n - 1

2, tương tự thôi bạn

29 tháng 4 2020

CẢM ƠN , HIC

a, \(A=\frac{n+7}{n+2}=\frac{n+2+5}{n+2}=\frac{5}{n+2}\)

\(\Rightarrow n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Ta lập bảng 

n + 21-15-5
n-1-33-7

b, \(B=\frac{n+5}{n-2}=\frac{n-2+7}{n-2}=\frac{7}{n-2}\)

\(\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng 

n - 21-17-7
n319-5

c, \(C=\frac{2n+13}{n+1}=\frac{2\left(n+1\right)+11}{n+1}=\frac{11}{n+1}\)

\(\Rightarrow n+1\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

Ta lập bảng

n + 11-111-11
n0-210-12
26 tháng 6 2020

d) Để D là số nguyên <=> \(\frac{3n+7}{2n+3}\)là số nguyên

<=> \(3n+7⋮2n+3\)

<=> 2(3n + 7) \(⋮\) 2n + 3

<=> 6n + 14 \(⋮\)2n + 3

<=> 3(2n + 3) + 5 \(⋮\)2n + 3

<=> 5 \(⋮\)2n + 3 (vì 3(2n + 3) \(⋮\)2n + 3)

<=> 2n + 3 \(\in\)Ư(5) = {1; -1; 5; -5}

Lập bảng:

2n + 3 1 -1 5 -5
  n -1 -2 1 -4

Vậy ....