Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ba số tự nhiên liên tiếp là p ; p + 1 và p + 2
Vì p và p + 2 đều là số nguyên tố nên số ở giữa p + 1 phải chia hết cho 2 ( 1 )
Mà 3 số tự nhiên liên tiếp phải có 1 số chia hết cho 3. Vì 2 số kia là số nguyên tố
=> p + 1 chia hết cho 3 ( 2 ). Từ ( 1 ) ( 2 ) => p + 1 chia hết cho 2 và 3 <=> p + 1 chia hết cho 6
p là số nguyên tố lớn hơn 3 nên p lẻ, do đó p+1⋮⋮2 (1)
p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2.
Dạng 3k+1 không xảy ra.
Dạng 3k+2 cho ta p+1⋮3 (2).
Từ (1) và (2) cho ta p+1⋮6
p là số nguyên tố lớn hơn 3=>p=3k+1;3k+2
xét p=3k+1=>8p+1=8(3k+1)+1=3.8k+8+1=3.8k+9=3(8k+3) chia hết cho 3
=>8p+1 là hợp số(trái giả thuyết)
=>p=3k+2
=>4p+1=4(3k+2)+1=3.4k+9=3(4k+3) chia hết cho 3
=>4p+1 là hợp số
=>đpcm
Số nguyên tố lớn hơn 3 sẽ có dạng 3k + 1 hay 3k + 2 ( k \(\in\)N )
Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3( k + 1 ) là số nguyên tố
Vì 3( k + 1 ) chia hết cho 3 nên dạng p = 3k + 1 không thể có
Vậy p có dạng 3k + 2 ( Vậy, p + 2 = 3k + 2 + 2 = 3k + 4 là 1 số nguyên tố )
=> p + 1 = 3k + 2 + 1 = 3k + 3 = 3( k+1 ) chia hết cho 3
Mặt khác p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ
=> p + 1 là 1 số chẵn
=> p + 1 chia hết cho 2
Vì p chia hết cho cả 2 và 3 mà ƯCLN( 2; 3 ) = 1
=> p + 1 chia hết cho 6
Vì p là số nguyên tố lớn hơn 3 => p không chia hết cho 3
=> p +1 chia het cho 3 (1)
Vì p là số nguyên tố lớn hơn 3 => p là số lẻ
=> p + 1 là số chẵn => p + 1 chia hết cho 2 (2)
Tu (1) va (2) => p + 1 chia het cho (3 x 2)
Hay P + 1 chia hết cho 6
k mik nha,đây là cách làm đúng nhất
p là số nguyên tố lớn hơn 3 => p là số lẻ => p+1 chia hết cho 2 (1).
p là số nguyên tố lớn hơn 3 => p không chia hết cho 3. Mà p+2 cũng là số nguyên tố => p+2 không chia hết cho 3.
Mà trong 3 số tự nhiên liên tiếp p, p+1, p+2 phải có 1 số chia hết cho 3 => p+1 chia hết cho 3 (2)
Từ (1) và (2) => p+1 chia hết cho 6 (do ƯCLN(2,3)=1).
Bổ sung cho Nguyễn Hung Phat:
Vì p là số nguyên tố lớn hơn 3
=> p là số lẻ
=> p + 1 là số chẵn
=> p + 1 chia hết cho 2
Kết hợp với p + 1 chia hết cho 3 của Nguyễn Hung Phat ta mới suy ra p + 1 chia hết cho 1
Vậy....
Số nguyên tố lớn hơn 3 có dạng là:3k+1 hoặc 3k+2(k\(\in\)N*)
Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3(k+1) chia hết cho 3(trái với giả thiết)
Nếu p=3k+2 thì p+1=3k+2+1=3k+3 chưa chắc chia hết cho 6 mà chỉ chia hết cho 3
=>bạn xem lại đề
Cho P là số nguyên tố lớn hơn 3.Biết P+2 cũng là một số nguyên tố.Chứng minh rằng P+1 chia hết cho 6
1, Ta có: p, p+1, p+2 là 3 số liên tiếp nên chắc chắn có 1 số chia hết cho 3 -> p+1 hoặc p+2 chia hết cho 3
p+2+6=p+8 là snt nên ko chia hết cho 3 nên p+1 chia hết cho 3 -> p+1+99 = p+100 chia hết cho 3 -> là hợp số
2, a, Nếu p có dạng 6k,6k+2,6k+3,6k+4 thì chia hết cho 2 hoặc 3
b, Do p là snt > 3 nên 8p ko chia hết cho 3. Trong 3 số liên tiếp 8p,8p+1,8p+2 có 8p và 8p+1 ko chia hết cho 3 nên 8p+2 chia hết cho 3.
Chia cho 2, do(2,3) = 1 nên 4p+1 chia hết cho 3 là hợp số
Ta có P là số nguyên tố > 3 nên P là số lẻ (1)
Vì P > 3 nên P có 2 dạng:
+ Nếu P = 3n + 1(n thuộc N), ta có:
P + 1 = 3n + 1 + 2 = 3n + 3 là hợp số, loại.
+ Nếu P = 3n + 2(n thuộc N), ta có:
P + 1 = 3n + 2 + 2 = 3n + 4 là số nguyên tố, chọn.
Thay P = 3n + 2 vào P + 1, ta có:
3n + 2 + 1 = 3n + 3 = 3(n + 1)
Mà từ (1) => 3n + 2 là số lẻ.
=> 3n là số lẻ
=> n là số lẻ
=> n + 1 là số chẵn và chia hết cho 2.
Vì n + 1 chia hết cho 2 => 3(n + 1) chia hết cho 2.
Mà 3 chia hết cho 3 => 3(n + 1) chia hết cho 3.
=> 3(n + 1) chia hết cho 6 (ƯCLN(2; 3) = 1)
số 5
1 ) 5 > 3
2 ) 5 + 2 = 7 ( 7 là số nguyên tố )
3 ) 5 + 1 = 6 ( điều phải chứng minh )
Các số nguyên tố p lớn hơn 3 : 5,7,11,13,.....
Ta có : p+2 cũng là số nguyên tố thì chỉ có p=5 thì p+2=7 mới là số nguyên tốt
Ta có p = 5 suy ra p+1=6 chia hết cho 6 (đccm)