K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2021

a) Ta có: \(\angle OAC+\angle ODC=90+90=180\Rightarrow OACD\) nội tiếp

b) Xét \(\Delta CDE\) và \(\Delta CBD:\) Ta có: \(\left\{{}\begin{matrix}\angle CDE=\angle CBD\\\angle BCDchung\end{matrix}\right.\)

\(\Rightarrow\Delta CDE\sim\Delta CBD\left(g-g\right)\Rightarrow\dfrac{CD}{CB}=\dfrac{CE}{CD}\Rightarrow CD^2=CB.CE\)

c) BC cắt DF tại G.BD cắt AC tại H

Vì AB là đường kính \(\Rightarrow\angle ADB=90\Rightarrow\Delta ADH\) vuông tại D

có \(CA=CD\) (CA,CD là tiếp tuyến) \(\Rightarrow\) C là trung điểm AH

Vì \(DF\parallel AH\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{GF}{AC}=\dfrac{BG}{BC}\\\dfrac{GD}{CH}=\dfrac{BG}{BC}\end{matrix}\right.\Rightarrow\dfrac{GF}{AC}=\dfrac{GD}{CH}\)

mà \(CA=CH\Rightarrow GF=GD\Rightarrow\) đpcmundefined

7 tháng 4 2020

a) Xét tam giác DFB có:

\(\hept{\begin{cases}\widehat{D}=90^o\left(DE\perp AB\right)\\\widehat{C}=90^o\end{cases}}\)

=> Tứ giác DFBC nội tiếp

b) Xét tam giác BFG có \(\hept{\begin{cases}\widehat{FBG}=\frac{1}{2}\widebat{AG}\\\widehat{BGF}=\frac{1}{2}\widebat{AE}\end{cases}}\)

Mà cung AB= cùng BG

=> BF=BG 

Toán lớp 9 cho siêu khó. Ai giải giúp em với sáng mai nộp mà còn kẹt lại 3 bài này @@Bài 1 : Ba đường tròn tâm I, K, H có bán kính bằng nhau và bằng R cùng đi qua một điểm O và từng đôi một cắt nhau tại điểm thứ hai là A, B, C. Chứng minh rằng :a) A, I, H, B là 4 đỉnh của 1 hình bình hànhb) Đường tròn đi qua 3 điểm A, B, C cũng có bán kính RBài 2 : Cho đường tròn tâm O, đường kính AB và một...
Đọc tiếp

Toán lớp 9 cho siêu khó. Ai giải giúp em với sáng mai nộp mà còn kẹt lại 3 bài này @@


Bài 1 : Ba đường tròn tâm I, K, H có bán kính bằng nhau và bằng R cùng đi qua một điểm O và từng đôi một cắt nhau tại điểm thứ hai là A, B, C. Chứng minh rằng :
a) A, I, H, B là 4 đỉnh của 1 hình bình hành
b) Đường tròn đi qua 3 điểm A, B, C cũng có bán kính R

Bài 2 : Cho đường tròn tâm O, đường kính AB và một điểm M di động trên nửa đường tròn. Vẽ đường tròn tâm E tiếp xúc với (O) tại M, tiếp xúc AB tại N. (E) cắt AM, MB tại điểm thứ hai lần lượt là C, D
a) Chứng minh CD // AB
b) Kẻ bán kính OK của (O) vuông góc với AB (K thuộc nửa mặt phẳng bờ AB không chứa M). Chứng minh M, N, K thẳng hàng

Bài 3 : Cho M, N là các giao điểm của hai đường tròn (O)(O'). Đường thẳng OM cắt (O), (O') lần lượt tại điểm thứ hai là A, B. Đường thẳng O'M cắt (O), (O') lần lượt tại điểm thứ hai là C, D. Chứng minh : ba đường thẳng AC, BD, MN đồng quy tại 1 điểm

0
21 tháng 11 2021

a, Xét ΔΔ ABC có  OA=OB=OC=12AB.OA=OB=OC=12AB.undefined

⇒Δ⇒Δ ABC vuông tại CC ⇒AC⊥BC.⇒AC⊥BC.

 Ta có AD là tiếp tuyến của nửa đường tròn tâm O nên AD ⊥⊥ AB.

Trong ΔΔ ABD vuông tại A có AC⊥BD⇒BC.BD=AB2.AC⊥BD⇒BC.BD=AB2.

Mà AB = 2R nên BC.BD=4R2.BC.BD=4R2.

b, Tam giác ACD vuông tại C có I là trung điểm của AD

⇒AI=DI=CI=12AD.⇒AI=DI=CI=12AD. (Tính chất đường trung tuyến ứng với cạnh huyền).

Xét  tam giác AOI và COI có

OI chung

OA = OC

AI = CI

⇒ΔAOI=ΔCOI(c−c−c).⇒ΔAOI=ΔCOI(c−c−c).  ⇒ˆIAO=ˆICO⇒IAO^=ICO^ (hai góc tương ứng).

Mà ˆIAO=900⇒ˆICO=900IAO^=900⇒ICO^=900 hay IC ⊥⊥OC

           ⇒⇒IC là tiếp tuyến của nửa đường tròn tâm O.

c, Ta có AD//CH (cùng vuông góc với AB)

Trong tam giác BAI có KH // AI ⇒KHAI=BKBI⇒KHAI=BKBI (định lý Ta-lét).

Trong tam giác BDI có CK // DI ⇒CKDI=BKBI⇒CKDI=BKBI (định lý Ta-lét).

Suy ra KHAI=CKDI.KHAI=CKDI.

Mà AI = DI nên KH = CK hay K là trung điểm của CH. (điều phải chứng minh).

14 tháng 5 2021

Ta có: AC là tiếp tuyến của (O) (gt)

=) AC vuông góc OA 

=) Góc OAC = 90độ (1)

Lại có: DC là tiếp tuyến của (O) (gt)

=) DC vuông góc OD

=) Góc ODC = 90độ (2)

Từ (1) và (2) =) góc ODC + góc OAC = 180 độ

Mà 2 góc ở vị trí đối nhau                           

=) Tứ giác OACD nội tiếp