Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p xem lại đề đc k
thử với n=1 ta được:
VT=3^3-2^3+3+2=27-8+3+2=24 không chia hết cho 10
a) Ta có \(3^{n+2}-2^{n+2}+3^n-2^n=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5=3^n\cdot10-2^{n-1}\cdot2\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot10=10\left(3^n-2^{n-1}\right)⋮10\)
Vậy \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\forall n\inℕ^∗\)
\(9^{n+2}+3^{n+2}-9^n+3^n\)
\(=9^n.9^2+3^n.3^2-9^n+3^2\)
\(=9^n\left(9^2-1\right)+3^n\left(3^2+1\right)\)
\(=9^n\left(80\right)+3^n\left(10\right)\)
\(\text{Do 80 chia hết cho 10 }\Rightarrow9^n.80\text{chia hết cho 10}\)
\(\text{Do 10 chia hết cho 10}\Rightarrow3^n.10\text{chia hết cho 10}\)
n là số tự nhiên nên n có 3 dạng : \(3k+1;3h+2;3l\left(k;h;l\in N\right)\)
\(2005\equiv1\left(mod3\right)\Rightarrow2005^n\equiv1\left(mod3\right)\)=> \(2005^n\)luôn chia 3 dư 1 với mọi số tự nhiên n
+>\(n=3k:n^{2005}⋮3;2005.n⋮3\Rightarrow2005^n+n^{2005}+2005.n⋮3\)dư 1 ( loại )
+>\(n=3k+1:n\equiv1\left(mod3\right)\Leftrightarrow n^{2005}\equiv1\left(mod3\right);2005\equiv1\left(mod3\right)\Leftrightarrow2005.n\equiv1.1=1\left(mod3\right)\)
\(\Rightarrow2005^n+n^{2005}+2005.n\equiv1+1+1=3\left(mod3\right);3⋮3\Rightarrow A⋮3\)( hợp lý -> chọn )
+>\(n=3k+2\Rightarrow n\equiv-1\left(mod3\right)\Leftrightarrow n^{2005}\equiv-1\left(mod3\right);2005\equiv1\left(mod3\right)\Rightarrow2005.n\equiv1.-1=-1\left(mod3\right)\)
\(\Rightarrow2005^n+n^{2005}+2005.n\equiv1+\left(-1\right)+\left(-1\right)=-1\left(mod3\right)\Leftrightarrow A⋮̸3\)( loại )
Vậy n là tất cả các số tự nhiên chia 3 dư 1.
Đỗ Đức Lợi làm thiếu rồi :))
\(A=2005^n+n^{2005}+2005.n⋮3\)
Ta có \(2005\)ko chia hết 3 vì 2005 chia 3 dư 1
=>2005n=3k+1(k\(\in N\))
Xét +) n=3k ta có A =2005n+n2005.n
A=(3k+1+3k+3k):3 dư 1
=> loại n=3k
+)n=3k+1 ta có A=3k+1+3k+1+3k+1
A=9k+3
A=3(k+1) \(⋮\)3
+)n=3 k+2 Ta có :
A=3k+1+3k+2+3k+2
A=9k +5 :3 dư 2
=>n=3k+2 ( loại )
Với n=3k+1 thì A=3(k+1) chia hết cho 3
Ta co : (2^4)^9=2^36
32^n=2^5n
Suy ra :2^36 chia het cho 2^5n
=> n=7 (7.5<36 va 7 la gia tri tu nhien lon nhat cua n )
a.2014100 + 201499
=201499.(2014+1)
=201499.2015
=> 2014100 + 201499 chia hết cho 2015
b.31994 + 31993 _ 31992
=31992.(32+3-1)
=31992.11
=>31994 + 31993 _ 31992 chia hết cho 11
c. 413 _ 325 _ 88
=(22)13-(25)5-(23)8
=226-225-224
=224.(22-2-1)
=224.5
=> 413 _ 325 _ 88 chia hết cho 5
a)\(2014^{100}+2014^{99}=2014^{99}.\left(2014+1\right)=2014^{99}.2015⋮2015\left(\text{Đ}PCM\right)\)
b)\(3^{1994}+3^{1993}-3^{1992}=3^{1992}.\left(3^2+3-1\right)=3^{1992}.\left(9+3-1\right)=3^{1992}.11⋮11\left(\text{Đ}PCM\right)\)
c)\(4^{13}-32^5-8^8=\left(2^2\right)^{13}-\left(2^5\right)^5-\left(2^3\right)^8=2^{26}-2^{25}-2^{24}=2^{24}.\left(2^2-2-1\right)\)
Đề sai rồi bạn 2^14 luôn tận cùng chẵn =>2^14 không chia hết cho 5
Chúc bạn học tốt
Bài 1 :
Ta có :
a chia 3 dư 1 ⇒a=3k+1⇒a=3k+1
b chia 3 dư 2 ⇒b=3k1+2⇒b=3k1+2 (k;k1∈N)(k;k1∈N)
ab=(3k+1)(3k1+2)=3k.k1+2.3k+3.k1+2ab=(3k+1)(3k1+2)=3k.k1+2.3k+3.k1+2
Mà 3k.k1+2.3k+3.k1⋮33k.k1+2.3k+3.k1⋮3
⇒3k.k1+2.3k+3.k1+2⇒3k.k1+2.3k+3.k1+2 chia 3 dư 2
⇒ab⇒ab chia 3 dư 2 →đpcm→đpcm
Bài 2 :
Ta có :
n(2n−3)−2n(n+1)n(2n−3)−2n(n+1)
=2n2−3n−2n2−2n=2n2−3n−2n2−2n
=−5n⋮5=−5n⋮5
⇒n(2n−3)−3n(n+1)⋮5⇒n(2n−3)−3n(n+1)⋮5 với mọi n
→đpcm
Bài 1:
a=3n+1
b= 3m+2
a*b= 3( 3nm+m+2n ) + 2 số này chia 3 sẽ dư 2.
Bài 2:
n(2n-3)-2n(n+1)
=2n^2-3n-2n^2-2n
= -5n
-5n chia hết cho 5 với mọi số nguyên n vì -5 chia hết cho 5
vậy n(2n-3)-2n(n+1) chia hết cho 5
n2014=(n1007)2 là số chính phương
số chính phương chia 3 dư 0 hoặc 1
vì n không chia hết cho 3=>n2014 chia 3 dư 1
vậy n2014 chia 3 dư 1