K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2018

Bài 1:

C A B E H D

Ta có: \(\widehat{ACB}+\widehat{ABC}=90^o\)

Xét: \(\Delta ABC\text{ và }\widehat{NBA}\)

      \(\widehat{CAB}=\widehat{ANB}=90^o\)

\(\Rightarrow\Delta ABC~\Delta AHB\)

b) \(\frac{AB}{NB}=\frac{AC}{NA}\)

\(\Leftrightarrow\frac{AB}{AC}=\frac{NB}{NA}\left(1\right)\)

Chứng minh tương tự: 

\(\Delta ABC~\Delta AHB\)

\(\frac{AN}{AB}-\frac{HC}{AC}\Rightarrow\frac{AB}{AC}=\frac{AN}{NC}\left(2\right)\)

\(\text{Từ (1) và (2) }\Rightarrow\frac{NB}{NA}=\frac{NA}{NC}\Rightarrow AB^2=BH.BC\left(đ\text{pcm}\right)\)

Xét tam giác vuông.

Áp dụng định lý Pi-ta-go, ta có: 

\(DB^2=AB^2+AD^2=6^2+8^2=100\)

\(\Rightarrow DB=\sqrt{100}=10\left(cm\right)\)

Bài 2: 

1 1 2 2 A B C D

a) Xét \(\Delta OAV\text{ và }\Delta OCD\)

Có: \(\widehat{AOB}=\widehat{COD}\left(đ^2\right)\)

     \(\widehat{A_1}=\widehat{C_1}\left(\text{so le}\right)\)

\(\Rightarrow\Delta OAB~\Delta OCD\)

\(\Rightarrow\frac{OB}{OD}=\frac{OA}{OC}\Rightarrow\frac{DO}{DB}=\frac{CO}{CA}\)

b) Ta có: \(AC^2-BD^2=DC^2-AB^2\)

\(\Leftrightarrow AC^2-DC^2=BD^2-AB^2\)

\(\Delta\text{ vuông }ABC\left(\text{theo định lý Pi-ta-go}\right)\)

\(AC^2-DC^2=AD^2\left(1\right)\)

\(\Delta\text{ vuông }BDA\text{ có }\left(\text{theo định lý Pi-ta-go}\right)\)

\(BD^2-AB^2=AD^2\)

\(\text{Từ (1) và (2) }\Rightarrowđ\text{pcm}\)

9 tháng 5 2018

cảm ơn bạn nhé

mình cần gấp nhưng ai làm dk bài nào thì làm nha, có hình càng tốtBài 1: Tam giác ABC vuông cân taij A. M là trung điểm BC. Qua M kẻ các dường thảng song song với AC, AB Cát AB, AC tại E và F. a, chứng minh AEMF là hình chữ nhật ,b, O là trung điểm AM, D là trung Điểm MC. Chứng Minh OMDF là Hình Thoi.C, biết AM 4cm. tính diện tích AEMFBài 2: Cho hình bình hành ABCD, có AB=2AD. Gọi E, F lần lượt là trung điểm của...
Đọc tiếp

mình cần gấp nhưng ai làm dk bài nào thì làm nha, có hình càng tốt

Bài 1: Tam giác ABC vuông cân taij A. M là trung điểm BC. Qua M kẻ các dường thảng song song với AC, AB Cát AB, AC tại E và F.

a, chứng minh AEMF là hình chữ nhật ,

b, O là trung điểm AM, D là trung Điểm MC. Chứng Minh OMDF là Hình Thoi.

C, biết AM 4cm. tính diện tích AEMF

Bài 2: Cho hình bình hành ABCD, có AB=2AD. Gọi E, F lần lượt là trung điểm của AB, CD

a, Cm AEFD là Hình thoi

b, AF cát DE tại M, BF cắt CE tại N. CM MENF là hình chữ nhật

c, Chứng minh MN, FE, AC, BD đồng quy

Bài 4: Hình chữ nhật ABCD, O là giao ddiemr 2 đường chéo. E đối xứng vs D qua C

a, Cm ABEC là hình bình hành

b, F là trung điểm BE. Tứ giác BDCF là hình gì? vì sao?

c, Cm tứ giác DOFE là Hình thang cân

d, hình chữ nhật ABCD cân để BOCF là hình vuông

2
24 tháng 12 2015

DÀI QUÁ LÀM XONG CHẮC VÀO BỆNH VIỆN

25 tháng 12 2015

câu 1

a) ta có MF // AB,BA vuông góc AC=> MF vuông góc AC=> MFA=90 độ

tương tự góc EAF=90 độ

tứ giác AEMF có góc EAF=MFA=AEM =90 độ=> tứ giác AEMF là hcn

b) tam giác ABC co AM la T tuyến ung voi canh huyền BC=> AM=1/2BC,MC=1/2BC=> AM=MC=> tam giác AMC cân tai M

=> MF là T tuyến => Flà tđ cua AC

xét tam giác MAC=> DF là đtb cua tam giác AMC => DF//AM=> DF//OM (1)

tương tự OF // MD (2) 

từ (1),(2) => T giác OMDF là hbh (3)

ta lai co OM=1/2AM,MD=1/2MC mà AM=MC => OM=DM (4)

từ (3),(4) => T giác OMDF la hình thoi

c) ta có tam giác ABC vuông can tai A=> góc BCA=45 độ

mà góc BCA= MAC=góc MAC =45 dộ=> tam giác MFA vuông can tai F

áp dung Pitago => AF=2 căn 2 cm, ma AF=FM=> AF=FM=2 căn 2 cm 

diện tích AEMF=AF.FM=2cAn 2.2can 2=8 cm vuông

3 tháng 10 2018

A B H D C 1 2

a,kẻ \(AH\bot DC(H\in BC)\)

cm được ABHD là hình chữ nhật suy ra AB=HD=2cm

Mà DH+HC=DC

\(\Rightarrow HC=DC-DH=4-2=2\Rightarrow HC=DH=2cm\) 

\(\Rightarrow \Delta DBC\) cân tại B

\(\Rightarrow \angle D_1=\angle C=45^o\Rightarrow \angle DBC=90^o\)

\(\Rightarrow\Delta DBC \) vuông cân tại B

b,Ta có \(\angle D_1+\angle D_2=90^o\Rightarrow \angle D_2=90^o-\angle D_1=90^o-45^o=45^o\)

\(\Rightarrow \angle D_1=\angle D_2 \Rightarrow\) DB là phân giác góc D

c,Ta tính được BH=DH=CH=2cm 

\(\Rightarrow S_{ABCD}=\dfrac{1}{2}BH(AB+DC)=\dfrac{1}{2}.2.(2+4)=6cm^2\)

Bài 6: Tam giác ABC cân tại A, BC = 120cm, AB = 100cm.Các đường cao AD và BE gặp nhau ở H.a) Tìm các tam giác đồng dạng với tam giác BDH.b).Tính độ dài HD, BHc).Tính độ dài HEBài 7: Cho tam giác ABC, các đường cao BD, CE cắt nhau ở H. Gọi K là hình chiếu của H trên BC.Chứng minh rằng:a) BH.BD = BK.BCb)CH.CE = CK.CBc) Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở Q ; M là trung...
Đọc tiếp

Bài 6: Tam giác ABC cân tại A, BC = 120cm, AB = 100cm.Các đường cao AD và BE gặp nhau ở H.

a) Tìm các tam giác đồng dạng với tam giác BDH.

b).Tính độ dài HD, BH

c).Tính độ dài HE

Bài 7: Cho tam giác ABC, các đường cao BD, CE cắt nhau ở H. Gọi K là hình chiếu của H trên BC.Chứng minh rằng:

a) BH.BD = BK.BC

b)CH.CE = CK.CB

c) Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở Q ; M là trung điểm của BC.Chứng minh: H ; M ; Q thẳng hàng.

Bài 8 :  Cho tam giác ABC cân tại A ; trên BC lấy điểm M , vẽ ME ; MF vuông góc với AC ; A
B.kẻ đường cao CH. Chứng minh:

a) Tam giác BFM đồng dạng với tam giác CEM.

b) Tam giác BHC và tam giác CEM đồng dạng.

c) ME + MF không đổi khi M di động trên BC.

Bài 9:  Cho hình hộp chữ nhật ABCDA’B’C’D’ có AB = 10cm  ; BC = 20 cm  ; AA’  = 15cm.

a)   Tính thể tích hình hộp chữ nhật.

b) Tính độ dài đường chéo AC’ của hình hộp chữ nhật.

Bài 10: Cho hình chóp tứ giác đều S .ABCD có cạnh đáy AB = 10 cm ; cạnh bên SA = 12 cm.

Tính :  a) Đường chéo AC

b) Tính đường cao SO và thể tích hình chóp.

0
19 tháng 11 2018

sai đầu bài rồi bạn ơi

21 tháng 11 2018

đúng mà