Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì \(AB\parallel DC\) nên áp dụng định lý Thales:
\(\frac{AQ}{QN}=\frac{AB}{DN}=\frac{DC}{DN}=3\)
\(\Rightarrow \frac{AQ}{AN}=\frac{3}{4}\)
Vì \(AD\parallel BC\) nên áp dụng định lý Thales:
\(\frac{AP}{PM}=\frac{AD}{BM}=\frac{BC}{BM}=2\)
\(\Rightarrow \frac{AP}{AM}=\frac{2}{3}\)
Kẻ \(QL, NT\perp AM\) \((L,T\in AM)\)
\(\Rightarrow QL\parallel NT\Rightarrow \frac{QL}{NT}=\frac{AQ}{AN}\) (theo định lý Thales)
Ta có:
\(\frac{S_{APQ}}{S_{AMN}}=\frac{QL.AP}{NT.AM}=\frac{QL}{NT}.\frac{AP}{AM}=\frac{AQ}{AN}.\frac{AP}{AM}=\frac{3}{4}.\frac{2}{3}=\frac{1}{2}\)
(đpcm)
A B C D N M P Q
a) Ta có : \(\frac{S_{APQ}}{S_{AMN}}=\frac{S_{APQ}}{S_{APN}}.\frac{S_{APN}}{S_{AMN}}=\frac{AQ}{AN}.\frac{AP}{AM}\)
Ta cần tính tỉ số \(\frac{AQ}{AN},\frac{AP}{AM}\)
Thật vậy, ta có : \(\frac{AQ}{QN}=\frac{AB}{DN}=3\Rightarrow\frac{AQ}{AQ+QN}=\frac{3}{4}\Rightarrow\frac{AQ}{AN}=\frac{3}{4}\)
\(\frac{AP}{PM}=\frac{AD}{BM}=2\Rightarrow\frac{AP}{AP+PM}=\frac{2}{3}\Rightarrow\frac{AP}{AM}=\frac{2}{3}\)
Do đó : \(\frac{AQ}{AN}.\frac{AP}{AM}=\frac{3}{4}.\frac{2}{3}=\frac{1}{2}\)
Vậy \(S_{APQ}=\frac{1}{2}.S_{AMN}\)
b) Ta có : \(\frac{CN}{ND}=2.\frac{BM}{MC}\)
đặt \(\frac{BM}{MC}=k\)thì \(\frac{CN}{ND}=2k\)
Đặt MC = x thì BM = kx . đặt ND = y thì CN = 2ky
ta có : \(\frac{AP}{PM}=\frac{AD}{BM}=\frac{x+kx}{kx}=\frac{k+1}{k}\Rightarrow\frac{AP}{AP+PM}=\frac{k+1}{2k+1}\)
\(\Rightarrow\frac{AP}{AM}=\frac{k+1}{2k+1}\) ( 1 )
Mặt khác, \(\frac{AQ}{QN}=\frac{AB}{DN}=\frac{2k+1}{1}\Rightarrow\frac{AQ}{AQ+QN}=\frac{2k+1}{2k+2}\Rightarrow\frac{AQ}{AN}=\frac{2k+1}{2k+2}\) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(\frac{AP}{AM}.\frac{AQ}{AN}=\frac{k+1}{2k+1}.\frac{2k+1}{2k+2}=\frac{1}{2}\)
Vậy \(S_{APQ}=\frac{1}{2}.S_{AMN}\)
?o?n th?ng f: ?o?n th?ng [A, B] ?o?n th?ng f_1: ?o?n th?ng [D, C] ?o?n th?ng i: ?o?n th?ng [A, D] ?o?n th?ng j: ?o?n th?ng [B, C] ?o?n th?ng k: ?o?n th?ng [A, C] ?o?n th?ng l: ?o?n th?ng [N, M] ?o?n th?ng m: ?o?n th?ng [N, C] ?o?n th?ng n: ?o?n th?ng [D, M] ?o?n th?ng p: ?o?n th?ng [A, M] ?o?n th?ng q: ?o?n th?ng [N, B] A = (-0.8, 5.28) A = (-0.8, 5.28) A = (-0.8, 5.28) B = (2.92, 5.32) B = (2.92, 5.32) B = (2.92, 5.32) D = (-4.48, -0.26) D = (-4.48, -0.26) D = (-4.48, -0.26) C = (-0.76, -0.22) C = (-0.76, -0.22) C = (-0.76, -0.22) ?i?m N: Trung ?i?m c?a i ?i?m N: Trung ?i?m c?a i ?i?m N: Trung ?i?m c?a i ?i?m M: Trung ?i?m c?a j ?i?m M: Trung ?i?m c?a j ?i?m M: Trung ?i?m c?a j ?i?m Q: Giao ?i?m c?a m, n ?i?m Q: Giao ?i?m c?a m, n ?i?m Q: Giao ?i?m c?a m, n ?i?m P: Giao ?i?m c?a p, q ?i?m P: Giao ?i?m c?a p, q ?i?m P: Giao ?i?m c?a p, q
Cô hướng dẫn thôi nhé :)
a. AMCN là hình thoi vì có AN//CM; AN = CM và \(AC\perp MN\)
b. Ta có góc DCB = 120 nên DNMC là hình thoi hay NM = MC = MB. Vậy tam giác NCB vuông tại N.
c. QNPM là hình chữ nhật : NP//QM, NQ//PM, NQ vuông góc PM.
Thấy ngay \(\frac{S_{NQM}}{S_{NMCD}}=\frac{S_{NMP}}{S_{ABMN}}=\frac{1}{4}\Rightarrow\frac{S_{NPMQ}}{S_{ABCD}}=\frac{1}{4}\)
d. Ta tính được DC , từ đó suy ra \(NC=DC\)
\(NB=2DQ=2\sqrt{DC^2-QC^2}\)