K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

a)Với m=2 thì hpt trở thành:

x-2y=5

2x-y=7

<=>

2x-4y=10

2x-y=7

<=>

-3y=3

2x-y=7

<=>

y=-1

x=3

b)\(\int^{\left(m-1\right)x-my=3m-1}_{2x-y=m+5}\Leftrightarrow\int^{x=\frac{3m+my-1}{m-1}}_{\frac{6m+2my-2}{m-1}-y=m+5}\Leftrightarrow\int^{x=\frac{3m+my-1}{m-1}}_{m^2+2m+my+y+3=0}\)

*m2+2m+my+y+3=0

<=>y.(m+1)=-m2-2m-3

*Với m=-1 =>PT vô nghiệm

*Với m khác -1 =>PT có nghiệm là: \(y=\frac{-m^2-2m-3}{m+1}=-m-1-\frac{2}{m+1}\)

 

bí tiếp

23 tháng 4 2020

a) Thay m=2 vào hpt, ta có \(\hept{\begin{cases}-x+2y=6\\6x-y=-4\end{cases}}\)

                                           \(\Leftrightarrow\hept{\begin{cases}y=6x+4\\-x+12x+8=6\end{cases}}\)

                                          \(\Leftrightarrow\hept{\begin{cases}11x=-2\\y=6x+4\end{cases}}\)

                                         \(\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{11}\\y=\frac{32}{11}\end{cases}}\)

Vậy m=2 thì hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{-2}{11};\frac{32}{11}\right)\)

b) Ta có \(\hept{\begin{cases}\left(m-3\right)x+2y=6\\y=3mx+4\end{cases}}\)

           \(\Leftrightarrow\hept{\begin{cases}y=3mx+4\left(1\right)\\mx-3x+6mx+8=6\left(2\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow\left(7m-3\right)x=-2\)

Hpt có nghiệm duy nhất \(\Leftrightarrow\)pt (2) có nghiệm duy nhất \(\Leftrightarrow7m-3\ne0\Leftrightarrow m\ne\frac{3}{7}\)(*)

Khi đó \(\left(2\right)\Leftrightarrow x=\frac{-2}{7m-3}\). Thay vào (1) \(\Leftrightarrow y=\frac{-6m}{7m-3}+4=\frac{-6m+28m-12}{7m-3}=\frac{22m-12}{7m-3}\)

Vậy \(m\ne\frac{3}{7}\)thì hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{-2}{7m-3};\frac{22m-12}{7m-3}\right)\)

Vì 2x+y>0\(\Rightarrow\frac{-4}{7m-3}+\frac{22m-12}{7m-3}>0\)

                \(\Leftrightarrow\frac{22m-16}{7m-3}>0\)

                \(\Leftrightarrow\orbr{\begin{cases}22m-16>0;7m-3>0\\22m-16< 0;7m-3< 0\end{cases}}\)

               \(\Leftrightarrow\orbr{\begin{cases}m>\frac{8}{11};m>\frac{3}{7}\\m< \frac{8}{11};m< \frac{3}{7}\end{cases}}\)

               \(\Leftrightarrow\orbr{\begin{cases}m>\frac{8}{11}\\m< \frac{3}{7}\end{cases}}\)

Kết hợp vs đk (*) \(\Rightarrow\orbr{\begin{cases}m>\frac{8}{11}\\m< \frac{3}{7}\end{cases}}\)thì 2x+y>0

11 tháng 3 2021

hpt \(\Leftrightarrow\hept{\begin{cases}mx-my=m^4+1\\my=-\left(m^2-2m\right)x+m^3-m^2-2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}my=mx-m^4-1\\y=-\left(m-2\right)x+m^2-m-\frac{2}{m}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=x-m^3-\frac{1}{m}\\y=-\left(m+2\right)x+m^2-m-\frac{2}{m}\end{cases}}\)

Để hpt vô nghiệm

\(\Leftrightarrow\hept{\begin{cases}-\left(m-2\right)=0\\-m^3-\frac{1}{m}\ne m^2-m-\frac{2}{m}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}m=2\\-m^4-1\ne m^3-m^2-2\end{cases}}\Leftrightarrow m=2\)

Vậy với m=2 thì hpt vô nghiệm

24 tháng 5 2018

Bài tập 6: Cho hệ phương trình :     (1)

1.      Giải hệ (1) khi m =  1.

2.      Xác định giá trị của m để hệ (1):

a)      Có nghiệm duy nhất và tìm nghiệm duy nhất đó theo m.

b)      Có nghiệm (x, y) thỏa: x – y = 2. 

AI giải dùm mình đi