K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Thay y=0 vào (1), ta được:

2x-1=0

hay \(x=\dfrac{1}{2}\)

Thay x=0 vào (1), ta được:

\(y=2\cdot0-1=-1\)

Vậy: \(A\left(\dfrac{1}{2};0\right)\); B(0;-1)

Thay y=0 vào (2), ta được:

x-1=0

hay x=1

Thay x=0 vào (2), ta được:

y=0-1=-1

Vậy: M(1;0); N(0;-1)

2 tháng 11 2018

a) Đồ thị hàm số y = 0,5x + 2 là đường thẳng đi qua các điểm (0; 2) và (-4; 0)

Đồ thị hàm số y = 5 – 2x là đường thẳng đi qua các điểm (0; 5) và (2,5; 0)

b) Ta có A(-4; 0), B(2,5; 0)

Tìm tọa độ điểm C, ta có: phương trình hoành độ giao điểm của đường thẳng y = 0,5x + 2 và y = 5 – 2x là

0,5x + 2 = 5 – 2x ⇔ 2,5x = 3

                               ⇔ x = 1,2

Do đó y = 0,5 . 1,2 + 2 = 2,6. Vậy C (1,2; 2,6)

c) Gọi D là hình chiếu của C trên Ox ta có:

CD = 2,6; AB = AO + OB = 4 + 2,5 = 6,5 (cm)

∆ACD vuông tại D nên AC2 = CD2 + DA2

⇒AC=√2,62+5,22=√33,8≈5,81(cm)⇒AC=2,62+5,22=33,8≈5,81(cm)

 Tương tự : BC=√BD2+CD2BC=BD2+CD2

                       =√1,32+2,62=√8,45≈2,91(cm)=1,32+2,62=8,45≈2,91(cm)

d) Ta có ∆ACD vuông tại D nên tgˆCAD=CDAD=2,65,2=12tgCAD^=CDAD=2,65,2=12

 ⇒ˆCAD≈26034′⇒CAD^≈26034′. Góc tạo bởi đường thẳng y=12x+2y=12x+2 và trục Ox là 26034’

Ta có ∆CBD vuông tại D nên tgˆCBD=CDBD=2,61,3=2⇒ˆCBD≈63026′tgCBD^=CDBD=2,61,3=2⇒CBD^≈63026′ 

Góc tạo bởi đường thẳng y = 5 – 2x và trục Ox là 1800 – 63026’ ≈ 116034’

a) - Vẽ đồ thị hàm số y = 0,5x + 2 (1)

    Cho x = 0 => y = 2 được D(0; 2)

    Cho y = 0 => 0 = 0,5.x + 2 => x = -4 được A(-4; 0)

Nối A, D ta được đồ thị của (1).

- Vẽ đồ thị hàm số y = 5 – 2x (2)

    Cho x = 0 => y = 5 được E(0; 5)

    Cho y = 0 =>0 = 5 – 2x => x = 2,5 được B(2,5; 0)

Nối B, E ta được đồ thị của (2).

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Ở câu a) ta tính được tọa độ của hai điểm A và B: A(-4; 0), B(2,5; 0)

Hoành độ giao điểm C của hai đồ thị là nghiệm phương trình:

    0,5x + 2 = 5 – 2x => x = 1,2

=> y = 0,5.1,2 + 2 = 2,6

=> Tọa độ C(1,2 ; 2,6)

c) AB = AO + OB = |-4| + |2,5| = 6,5 (cm)

Gọi H là hình chiếu của C trên Ox, ta có H( 1,2; 0)

Để học tốt Toán 9 | Giải bài tập Toán 9

d) Gọi α là góc hợp bởi đường thẳng y = 0,5x + 2 với tia Ox.

Ta có: tgα = 0,5 => α = 26o34'

Gọi β là góc hợp bởi đường thẳng y = 5 – 2x với tia Ox (β là góc tù).

Gọi β' là góc kề bù với β, ta có:

tgβ' = -(-2) = 2 => β' = 63o26'

=> β = 180o – 63o26' = 116o34'

4 tháng 11 2015

C. (M;5) tiếp xúc với Ox cắt Oy

 

 

9 tháng 8 2021

a, bạn tự vẽ nhé 

b, Để hàm số nghịch biến khi m < 0 

c, đths y = mx + 2m - 1 cắt trục tung tại điểm có tung độ bằng 3 

Thay x = 0 ; y = 3 ta được : \(2m-1=3\Leftrightarrow m=2\)

d, đths y = mx + 2m - 1 cắt trục hoành tại điểm có hoành độ bằng -3 

Thay x = -3 ; y = 0 ta được : \(-3m+2m-1=0\Leftrightarrow-m-1=0\Leftrightarrow m=-1\)

9 tháng 8 2021

bổ sung hộ mình nhé 

( dòng đầu tiên ) Để đths trên là hàm bậc nhất khi \(m\ne0\)

7 tháng 6 2021

mình mơi đăng nhập vào lên nhé

7 tháng 6 2021

a, tự vẽ nhé 

b, * Vì d3 cắt d1, hoành độ giao điểm thỏa mãn phương trình

\(-\frac{1}{3}x+3=2x-2\Leftrightarrow-\frac{7}{3}x=-5\Leftrightarrow x=\frac{15}{7}\)

Thay x = 15/7 vào d1 ta được : \(y=\frac{30}{7}-2=\frac{16}{7}\)

* Vì d3 cắt d2, hoành độ giao điểm thỏa mãn phương trình 

\(-\frac{4}{3}x-2=-\frac{1}{3}x+3\Leftrightarrow-x=5\Leftrightarrow x=-5\)

Thay x = -5 vào d2 ta được : \(y=\frac{20}{3}-2=\frac{14}{3}\)

Vậy d3 cắt d1 tại A ( 15/7 ; 16/7 )

d2 cắt d1 tại B( -5 ; 14/3 )