Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình trên
<=> kx2 + (2 - 4k)x + (3k - 2) = 0
Ta có ∆' = (1 - 2k)2 - (3k - 2)k
= 1 - 4k + 4k2 - 3k2 + 2k
= k2 - 2k + 1 = (k - 1)2 \(\ge0\)
Vậy pt có nghiệm với mọi k
\(k\left(x-1\right)\left(x-3\right)+2\left(x-1\right)=0\)
\(\left(x-1\right)\left[k\left(x-3\right)+2\right]=0\Rightarrow\orbr{\begin{cases}x=1\\k\left(x-3\right)+2=0\end{cases}}\)vậy pt luôn có nghiệm x = 1 với mọi k.
Bài toán hay dùng BĐT Vacs\(\sqrt{a^2-a+1\:}+\sqrt{b^2-b+1}+\sqrt{c^2-c+1}\ge a+b+c\)
Kết hợp giữa việc sử dụng phương pháp tiếp tuyến và tinh ý nhận ra bổ đề Vacs
Chú tth thử làm nhứ. Trong TKHĐ của t có sol rồi nha !!!!
a) Ta có hệ phương trình \(\hept{\begin{cases}kx-y=5\\x+y=1\end{cases}}\) Thay nghiệm \(\left(x,y\right)=\left(2,-1\right)\) ta có hệ mới là :
\(\hept{\begin{cases}2k-1=5\\2-1=1\end{cases}\Leftrightarrow k=3}\)
b) Ta có : \(\hept{\begin{cases}kx-y=5\\x+y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\kx-1-x=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\x\left(k-1\right)=6\end{cases}}\)
Để hệ phương trình có nghiệm duy nhất : \(\Leftrightarrow k-1\ne0\) \(\Leftrightarrow k\ne1\)
Để hệ phương trình vô nghiệm \(\Leftrightarrow k-1=0\Leftrightarrow k=1\)
P/s : Em chưa học lớp 9 nên không biết cách trình bày cho lắm :))
Do \(x^2+2mx+n=0\) có nghiệm \(\Rightarrow m^2-n\ge0\)
Xét pt: \(x^2+2\left(k+\dfrac{1}{k}\right)mx+n\left(k+\dfrac{1}{k}\right)^2=0\)
\(\Delta'=\left(k+\dfrac{1}{k}\right)^2m^2-n\left(k+\dfrac{1}{k}\right)^2=\left(k+\dfrac{1}{k}\right)^2\left(m^2-n\right)\ge0\) với mọi k
\(\Rightarrow\)Pt đã cho có nghiệm
dbrr
khó vl