K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

\(A=x^2-x+5=2^2-2+5=2+5=7\)

\(B=\left(x-1\right)\left(x+2\right)-x\left(x-2\right)-3x\)

\(=x^2+x-2-x^2+2x-3x\)

\(=-2\)

22 tháng 10 2021

a,A =  x- x + 5 ,khi x = 2

= 22 - 2 + 5

= 7.

 

22 tháng 10 2021

a: Thay x=2 vào A, ta được:

\(A=2^2-2+5=4+5-2=7\)

30 tháng 10 2020

a) Đk: x > 0 và x khác +-1

Ta có: A = \(\left(\frac{x+1}{x}-\frac{1}{1-x}-\frac{x^2-2}{x^2-x}\right):\frac{x^2+x}{x^2-2x+1}\)

A = \(\left[\frac{\left(x-1\right)\left(x+1\right)+x-x^2+2}{x\left(x-1\right)}\right]:\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)

A = \(\frac{x^2-1+x-x^2+2}{x\left(x-1\right)}\cdot\frac{\left(x-1\right)^2}{x\left(x+1\right)}\)

A = \(\frac{x+1}{x}\cdot\frac{x-1}{x\left(x+1\right)}=\frac{x-1}{x^2}\)

b) Ta có: A = \(\frac{x-1}{x^2}=\frac{1}{x}-\frac{1}{x^2}=-\left(\frac{1}{x^2}-\frac{1}{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\frac{1}{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> 1/x - 1/2 = 0 <=> x = 2 (tm)

Vậy MaxA = 1/4 <=> x = 2

a: Thay x=2/3 vào A, ta được:

\(A=\dfrac{3\cdot\dfrac{2}{3}+2}{\dfrac{2}{3}}=\dfrac{2+2}{\dfrac{2}{3}}=4\cdot\dfrac{3}{2}=6\)

b: \(B=\dfrac{x^2+1}{x^2-x}-\dfrac{2}{x-1}\)

\(=\dfrac{x^2+1}{x\left(x-1\right)}-\dfrac{2}{x-1}\)

\(=\dfrac{x^2+1-2x}{x\left(x-1\right)}\)

\(=\dfrac{\left(x-1\right)^2}{x\left(x-1\right)}=\dfrac{x-1}{x}\)

c: P=A:B

\(=\dfrac{3x+2}{x}:\dfrac{x-1}{x}=\dfrac{3x+2}{x}\cdot\dfrac{x}{x-1}=\dfrac{3x+2}{x-1}\)

Để P là số nguyên thì \(3x+2⋮x-1\)

=>\(3x-3+5⋮x-1\)

=>\(5⋮x-1\)

=>\(x-1\in\left\{1;-1;5;-5\right\}\)

=>\(x\in\left\{2;0;6;-4\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;6;-4\right\}\)

Thay x=2 vào P, ta được:

\(P=\dfrac{3\cdot2+2}{2-1}=\dfrac{8}{1}=8\)

Thay x=6 vào P, ta được:

\(P=\dfrac{3\cdot6+2}{6-1}=\dfrac{18+2}{5}=\dfrac{20}{5}=4\)

Thay x=-4 vào P, ta được:

\(P=\dfrac{3\cdot\left(-4\right)+2}{-4-1}=\dfrac{-12+2}{-5}=\dfrac{-10}{-5}=2\)

Vì 2<4<8

nên khi x=-4 thì P có giá trị nguyên nhỏ nhất

24 tháng 8 2021

a, \(5x^2\)\(-3x-x^3+x^2+x^3-6x^2\)\(-10+3x\)=\(-10\)

b,\(x^3+x^2+x-x^3-x^2-x+5=5\)

5 tháng 9 2020

b) 5(3xn + 1 - yn - 1) + 3(xn + 1 + 5yn - 1) - 5(3xn + 1 + 2yn - 1) - (3n + 1 - 10)

= 15xn + 1 - 5yn - 1 + 3xn + 1 + 15yn - 1 - 15xn + 1 - 10yn - 1 - 3n + 1 - 10

= (15xn + 1 + 3xn + 1 - 15xn + 1 - 3n + 1) + (15yn - 1 - 5yn - 1 - 10yn - 1) - 10

= xn + 1(15 + 3 - 15 - 3) + yn - 1(15 - 5 - 10) - 10

= 0 - 0 - 10 = -10 (đpcm)

a) h(x) = (x + 1)(x2 - x + 1) - (x - 1)(x2 + x + 1)

= x3 - x2 + x + x2 - x + 1 - x3 - x2 - x + x2 + x + 1

= (x3 - x3) - (x2 - x2 + x2 - x2) + (x - x - x + x) + (1 + 1)

= 1 + 1 

= 2 (đpcm)

5 tháng 9 2020

a) h(x) = ( x + 1 )( x2 - x + 1 ) - ( x - 1 )( x2 + x + 1 )

           = ( x3 + 13 ) - ( x3 - 13 )

           = x3 + 1 - x3 + 1

            = 2

Vậy h(x) không phụ thuộc vào biến ( đpcm )

b) 5( 3xn+1 - yn-1 ) + 3( xn+1 + 5yn-1 ) - 5( 3xn+1 + 2yn-1 ) - ( 3xn+1 - 10 )

= 15xn+1 - 5yn-1 + 3xn+1 + 15yn-1 - 15xn+1 - 10yn-1 - 3xn+1 + 10

= ( 15xn+1 + 3xn+1 - 15xn+1 - 3xn+1 ) + ( -5yn-1 + 15yn-1 - 10yn-1 ) + 10

= 0 + 0 + 10 = 10

Vậy giá trị của biểu thức không phụ thuộc vào biến ( đpcm )

13 tháng 8 2021

Trả lời:

a, x ( 5x - 3 ) - x2 ( x - 1 ) + x ( x2 - 6x ) - 10 + 3x 

= 5x2 - 3x - x3 + x2 + x3 - 6x2 - 10 + 3x

= - 10

Vậy giá trị của biểu thức không phụ thuộc vào giá trị của biến.

b, x ( x2 + x + 1 ) - x2 ( x + 1 ) - x + 5 

= x3 + x2 + x - x3 - x2 - x + 5

= 5

Vậy giá trị của biểu thức không phụ thuộc vào giá trị của biến.

21 tháng 12 2018

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

21 tháng 12 2018

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3