Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài bn thiếu hay sao ý, thế này đúng ko?
Cho góc xOy trên tia Ox lấy các điểm A và B. Tia Oy lấy các điểm C, D sao cho OA = OC , OB = CD. a, Tam giác ABC= tam giác CDA. b, Tam giác ABD= Tam giác CDB
Bài làm:
OABCDxy
Giải:
a, Xét tam giác OBC và tam giác ODA có:
OA = OC
\(\widehat{O}chung\)
OB=OD
=> Tam giác OBC = Tam giác ODA (c.g.c)
=> CB = AD
Ta có: OA = OC , OB = OD
=> OB - OA = OD - OC
=> AB = CD
Xét tam giác ABC và tam giác CDA có:
AB = CD ( chứng minh trên )
cạnh AC chung
AD = BC ( chứng minh trên )
=> tam giác ABC = tam giác CDA (c.c.c)
b,Xét tam giác ABD và tam giác CDB có:
BD chung
AD = CB
AB=CD
=> Tam giác ABD = tam giác CDB(c.c.c)
a) Đầu tiên bạn xét tam giác OBD và tam giác OCA = nhau theo trường hợp c.g.c xog suy ra 2 cạnh tương ứng
b) chứng minh AB=DC theo cách cộng đoạn thẳng
chứng minh góc BAE = góc EDC theo cách tổng 3 góc trong 1 tam giác (đầu tiên đưa ra tam giác OBD và tam giác OCA = nhau theo chứng minh trên từ đó suy ra góc B= góc C, sau đó có góc AEB= góc DEC vì đối đỉnh, mà cộng tổng 3 góc trong 1 tam giác luôn =180 độ nên góc BAE = góc EDC)
từ đó xét tam giác ABE=tam giác DCE theo trường hợp g.c.g
a. Xét ΔOADvà ΔOCB:
Ta có: ˆO góc chung
OC=OA
CD=AB (OC=OA và OD=OB)
Vậy ΔOAD = ΔOCB (c.g.c)
Vậy ˆODA=ˆOBC (góc tương ứng)
Xét ΔABC và ΔCDA:
Ta có:
AC cạnh chung
ˆODA=ˆOBC
CD=AB (OC=OA và OD=OB)
Vậy ΔABC = ΔCDA(g.c.g)
a) Xét tam giác AOD và BOC
có OA = OB; góc O chung ; OD=OC
=> tgiac AOD = BOC ( c-g-c)
=>AD =BC cạnh tương ứng
+ Ta có OA - OC = OB -OD => AC =BD
=> tam giác ABC = BAD ( c-c-c)
b) tam giác AIO = BIO => Góc IOA = góc IOB => OI là phân giác....
b) ta có OA=OC, AB=CD (gt)
mà OB=OA+AB=OC+CD=OD
=> OB=OD
xét tg OBC và tg ODA có:
OA=OC(gt)
Ô là góc chung
OB=OD(c/m trên)
=>tg OCB= tg OAD(c-g-c)
=>CB=AD(2 cạng tương ứng trong tg)(1)
xét tg ABD và tg CDB, có:
AB=CD (gt)
AD=CB (c/m trên)
BD là cạng chung
Vậy tg ABD =tg CDB (c-c-c)
a) xét tg ABC=CDA có
AB=CD(gt)
AC là cạnh chung
AD=CB( c/m 1)
=>tg ABC= tg CDA(c-c-c)