K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2019

x y O I A B

gt : \(\widehat{xOy}< 90^{\text{o}}\)\(\widehat{xOI}=\widehat{Ioy}\)\(IA\perp Ox\)\(IB\perp Oy\)

kl : .

c/m : Xét  AIO  và  BIO , có :

\(OI\) là cạnh chung

\(\widehat{xOI}=\widehat{IOy}\left(gt\right)\)

\(\Rightarrow\) AIO BIO  (ch - gn)

\(\Rightarrow IA=IB\) (2 cạnh tương ứng) (đpcm)

25 tháng 1 2019

< Em tự vẽ hình nhé! >

+, Xét ​tam giác IAO và tam giác IBO có :

              IO chung

              Góc AOI = Góc IOB ( vì OI là tia phân giác của góc xOy)

               Góc IAO = Góc IOB = 90 độ (gt)

=> Tam giác IAO = tam giác IBO ( ch-gn)

=> IA = IB ( 2 cạnh tương ứng )

18 tháng 1 2020

P/s: sửa I là điểm chứ không phải là trung điểm

Hình tự vẽ :<

a) Xét \(\Delta\)AOI và \(\Delta\)BOI có:

IAO=IBO (=90o)

IO: chung

AOI=BOI (OI: p/g AOB)

\(\Rightarrow\Delta\)AOI=\(\Delta\)BOI (ch-gn)

\(\Rightarrow\)IA=IB (2 cạnh tương ứng)

b) Xét \(\Delta\)KOB và \(\Delta\)MOA có:

KBO=MAO (\(\Delta\)AOI=\(\Delta\)BOI)

OB=OA ( \(\Delta\)AOI=\(\Delta\)BOI)

O: chung

\(\Rightarrow\)\(\Delta\)KOB=\(\Delta\)MOA (g.c.g)

\(\Rightarrow\)OK=OM (2 cạnh tương ứng)

Ta có:

\(\hept{\begin{cases}OA+AK=OK\\OB+BM=OM\end{cases}}\)mà \(\hept{\begin{cases}OA=OB\\OK=OM\end{cases}}\)

\(\Rightarrow\)AK=BM 

c) Ta có: OM=OK (cmt)

\(\Rightarrow\)\(\Delta\)KOM cân tại O

\(\Rightarrow\)OMK=OKM 

Xét \(\Delta\)OCM và \(\Delta\)OCK có:

OMK=OKM (cmy)

OC: chung

COM=COK (OC: p/g MOK)

\(\Rightarrow\)\(\Delta\)OCM=\(\Delta\)OCK (g.c.g)

\(\Rightarrow\)OCM=OCK (2 góc tương ứng)

Mà OCM+OCK=180o (kề bù)

\(\Rightarrow\)OCM=OCK=180o:2=90o

\(\Rightarrow\)OC \(\perp\) MK

19 tháng 11 2017

Bạn vẽ hình rồi chụp lên đc ko

19 tháng 11 2017

bài này dễ à bạn vẽ thê đường phụ một tí là ok cmnr 

1. Cho tam giác ABC cân ở A, Góc BAC = 1800 . Gọi O là một điểm nằm trên tia phân giác của góc C sao cho góc CBO = 120 . Vẽ tam giác đều BOM ( M và A cùng thuộc nửa mặt phẳng bở BO). Chứng minh 3 điểm C, A, O thẳng hàng2. Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CD lấy điểm N sao cho BM=CN .a. Chứng minh tam giác ABM = tam giác ACNb. Kẻ BH vuông góc AM; CK vuông góc AN (H...
Đọc tiếp

1. Cho tam giác ABC cân ở A, Góc BAC = 1800 . Gọi O là một điểm nằm trên tia phân giác của góc C sao cho góc CBO = 120 . Vẽ tam giác đều BOM ( M và A cùng thuộc nửa mặt phẳng bở BO). Chứng minh 3 điểm C, A, O thẳng hàng

2. Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CD lấy điểm N sao cho BM=CN .
a. Chứng minh tam giác ABM = tam giác ACN
b. Kẻ BH vuông góc AM; CK vuông góc AN (H thuộc AM; K thuộc AN ). Chứng minh AH = AK.
c. Gọi O là giao điểm của BH và KC. Tam giác OBC là tam giác gì ? Vì sao ?

3. Cho tam giác ABD, có góc B = 2 góc D, kẻ AH vuông góc với BD (H thuộc BD ). Trên tia đối của BA lấy BE=BH. Đường thẳng EH cắt AD tại F. Chứng minh FH=FA=FD

4. Cho góc nhọn  \(\widehat{xOy}\) . Gọi I là một điểm thuộc tia phân giác của \(\widehat{xOy}\). Kẻ IA \(\perp\) Ox (Điểm A thuộc tia Ox ) và IB \(\perp\)  Oy (Điểm B thuộc tia Oy )

a. Chứng minh IA = IB

b. Cho biết OI = 10cm, AI = 6cm. Tính OA

c. Gọi K là giao điểm của  BI và Ox và M là giao điểm của AI với Oy. Chứng minh ba điểm B, K, C thẳng hàng

 

 

1
11 tháng 2 2016

Câu 1 trước