K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

O O' A B C H I K

a) Kẻ O'K vuông góc với OB tại K.

Ta có: \(OO'=AO+AO'=R+r\). Dễ thấy tứ giác BKO'C là hình chữ nhật

\(\Rightarrow O'C=BK\Rightarrow BK=r\)\(\Rightarrow OK=OB-BK=R-r\)

Áp dụng ĐL Pytago cho \(\Delta\)OKO' vuông tại K: \(OO'^2-OK^2=O'K^2\)

\(\Leftrightarrow\left(R+r\right)^2-\left(R-r\right)^2=O'K^2\)

\(\Leftrightarrow O'K^2=\left(R+r-R+r\right)\left(R+r+R-r\right)=2r.2R=4Rr\)

\(\Leftrightarrow O'K=2\sqrt{Rr}.\)Mà O'K=BC => \(BC=2\sqrt{Rr}\)

b) Sửa đề: CMR: O'B; OC và AH đồng qui ...

Gọi giao điểm của OC và AH là I. Áp dụng hệ quả ĐL Thales: 

\(\frac{AI}{O'C}=\frac{OA}{OO'}=\frac{R}{R+r}\)\(\Rightarrow\frac{AI}{r}=\frac{R}{R+r}\Leftrightarrow AI=\frac{Rr}{R+r}\)(1)

\(\frac{HI}{OB}=\frac{CH}{BC}=\frac{O'A}{OO'}\)(Do OB // AH // O'C) \(\Rightarrow\frac{HI}{R}=\frac{r}{R+r}\Leftrightarrow HI=\frac{Rr}{R+r}\)(2)

Từ (1) và (2) => AI=HI => I là trung điểm của AH => OC đi qua trung điểm của AH

Tương tự ta c/m được O'B đi qua trung điểm AH => ĐPCM.

21 tháng 7 2018

Bạn bồi dưỡng Toán phải không?

4 tháng 5 2020

hình :

B C O O' A M H D

4 tháng 5 2020

a) Đường tròn ( O ) và ( O' ) tiếp xúc ngoài tại A tại A nên A,O,O' thẳng hàng.

Qua A vẽ tiếp tuyến chung cắt BC tại M,ta được MB = MC = MA 

Suy ra BC = 2MA

Ta có : \(MO\perp MO'\) 

áp dụng hệ thức lượng vào \(\Delta MOO'\)vuông tại M,ta có :

MA2 = AO.AO' hay MA2 = R.r 

\(\Rightarrow MA=\sqrt{R.r}\)

\(\Rightarrow BC=2\sqrt{R.r}\)

b) gọi D là giao điểm của OC và AH. 

Ta có OB // O'C // AH ( cùng vuông góc với BC )

Theo định lí Ta-let, ta có :

\(\frac{DH}{OB}=\frac{CD}{CO}=\frac{AO'}{OO'}\)

Suy ra : \(\frac{DH}{R}=\frac{r}{R+r}\Rightarrow DH=\frac{R.r}{R+r}\)

Tương tự : \(DA=\frac{R.r}{R+r}\)

\(\Rightarrow AD=DH\)

CMTT O'B cũng đi qua D

Vậy 3 đường thẳng OC,O'B,AH đồng quy tại D

14 tháng 11 2021

a, Vì MA = MC ( tc tiếp tuyến ) 

OA = OC = R 

Vậy OM là đường trung trực AC hay MO vuông AC 

Ta có : ^ACB = 900 ( góc nội tiếp chắn nửa đường tròn ) 

hay AC vuông BC 

lại có AC vuông MO ( cmt ) 

=> OM // BC ( tc vuông góc đến song song ) 

b, Vì MA là tiếp tuyến với A là tiếp điểm suy ra ^MAO = 900

Áp dụng định lí Pytago tam giác MAO vuông tại A

\(MO=\sqrt{AM^2+AO^2}=\sqrt{64+36}=10\)cm 

Gọi MO giao AC = T 

Áp dụng hệ thức : \(AT.MO=AM.AO\Rightarrow AT=\frac{AM.AO}{MO}=\frac{48}{10}=\frac{24}{5}\)cm 

Vì MO là đường trung trực nên AT = TC 

=> AC = 2AT = 24/5 . 2 = 48/5 cm 

https://diendantoanhoc.net/index.php?app=core&module=attach&section=attach&attach_id=20602

Vào link này xem nhé

Học tốt!!!!!!!