K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2021

Ta có : 

\(f\left(1\right)=1-m+1+3m-2=2m\)

\(g\left(2\right)=4-4\left(m+1\right)-5m+1=4-4m-4-5m+1=-9m+1\)

mà \(f\left(1\right)=g\left(2\right)\)hay \(2m=-9m+1\Leftrightarrow11m=1\Leftrightarrow m=\frac{1}{11}\)

8 tháng 4 2021

Trả lời:

f(1)=g(2)

<=> 12-(m-1).1 +3m -2= 22-2(m+1).2-5m+1

<=>1-m+1+3m=4-4m-4-5m+1

<=> 2m+2=-9m+1

<=> 11m=1

=> m=1/11

11 tháng 4 2019

Bài 1 :

\(M+N\)

\(=\left(2xy^2-3x+12\right)+\left(-xy^2-3\right)\)

\(=2xy^2-3x+12-xy^2-3\)

\(=\left(2xy^2-xy^2\right)-3x+\left(12-3\right)\)

\(=xy^2-3x+9\)

11 tháng 4 2019

gải hộ mình bài 2

8 tháng 9 2018

Ta có f(1) = 12 -(m - 1).1 + 3m - 2 = 2m

g(2) = 22 - 2(m + 1).2 - 5m + 1 = -9m + 1

Vì f(1) = g(2) ⇒ 2m = -9m + 1 ⇒ 11m = 1 ⇒ m = 1/11. Chọn D

1 tháng 4 2019

\(f\left(x\right)-g\left(x\right)=5x^2-2x+5-\left(5x^2-6x-\frac{1}{3}\right)\)

\(5x^2-2x+5-5x^2+6x+\frac{1}{3}\)

=\(4x+\frac{16}{3}\)

2 tháng 4 2019

sao làm csw mỗi câu z bạn

1: f(-1)=0 

=>1+m-1+3m-2=0 và 

=>4m-2=0

=>m=1/2

2: g(2)=0

=>2^2-4(m+1)-5m+1=0

=>4-5m+1-4m-4=0

=>-9m+1=0

=>m=1/9

4: f(1)=g(2)

=>1-(m-1)+3m-2=4-4(m+1)-5m+1

=>1-m+1+3m-2=4-4m-4-5m+1

=>2m-2=-9m+1

=>11m=3

=>m=3/11

3:

H(-1)=0

=>-2-m-7m+3=0

=>-8m=-1

=>m=1/8

5: g(1)=h(-2)

=>1-2(m+1)-5m+1=-8-2m-7m+3

=>-5m+2-2m-2=-9m-5

=>-7m=-9m-5

=>2m=-5

=>m=-5/2

23 tháng 7 2021

a) \(f\left(x\right)-g\left(x\right)=\left[x\left(x^2-2x+7\right)-1\right]-\left[x\left(x^2-2x-1\right)-1\right]\)

\(f\left(x\right)-g\left(x\right)=x^3-2x^2+7x-1-x^3+2x^2+x+1\)

\(f\left(x\right)-g\left(x\right)=8x\)

 \(f\left(x\right)+g\left(x\right)=x\left(x^2-2x+7\right)-1+x\left(x^2-2x-1\right)-1\)

 \(f\left(x\right)+g\left(x\right)=x^3-2x^2+7x-1+x^3-2x^2-x-1\)

 \(f\left(x\right)+g\left(x\right)=2x^3-4x^2+6x-2\)

b) 8x=0

=> x=0

=> Nghiệm đa thức f(x)-g(x)

c) Thay \(x=-\frac{3}{2}\)vào BT f(x)+g(x) ta được :

   \(2.\left(-\frac{3}{2}\right)^3-4\left(-\frac{3}{2}\right)^2+6\left(-\frac{3}{2}\right)-2\)

\(=6,75+9-9-2\)

\(=4,75\)

#H

28 tháng 7 2023

a) \(f\left(x\right)=x^2-\left(m-1\right)x+3m-2\)

Để đa thức f(x) có nghiệm là -1 khi:

\(f\left(-1\right)=\left(-1\right)^2-\left(m-1\right).\left(-1\right)+3m-2=0\)

\(\Rightarrow1+m-1+3m-2=0\)

\(\Rightarrow4m=2\Rightarrow m=\dfrac{1}{2}\)

b) \(g\left(x\right)=x^2-2\left(m+1\right)x-5m+1\)

Để đa thức g(x) có nghiệm là 2 khi:

\(g\left(2\right)=2^2-2\left(m+1\right).2-5m+1=0\)

\(\Rightarrow4-4\left(m+1\right)-5m+1=0\)

\(\Rightarrow4-4m-1-5m+1=0\)

\(\Rightarrow-9m=-4\Rightarrow m=\dfrac{4}{9}\)

c) \(h\left(x\right)=-2x^2+mx-7m+3\)

Để đa thức h(x) có nghiệm là -1 khi:

\(h\left(-1\right)=-2\left(-1\right)^2+m.\left(-1\right)-7m+3=0\)

\(\Rightarrow-2-m-7m+3=0\)

\(\Rightarrow-8m=-1\Rightarrow m=\dfrac{1}{8}\)

d) -Để \(f\left(1\right)=g\left(2\right)\) khi và chỉ khi

\(1^2-\left(m-1\right).1+3m-2=2^2-2\left(m+1\right).2-5m+1\)

\(\Rightarrow1-m+1+3m-2=4-4m-4-5m+1\)

\(\Rightarrow11m=1\Rightarrow m=\dfrac{1}{11}\)

-Để \(g\left(1\right)=h\left(-2\right)\) khi và chỉ khi

\(1^2-2\left(m+1\right).1-5m+1=-2\left(-2\right)^2+m.\left(-2\right)-7m+3\)

\(\Rightarrow1-2m-2-5m+1=-8-2m-7m+3\)

\(\Rightarrow2m=-5\Rightarrow m=-\dfrac{5}{2}\)

19 tháng 5 2021

Cách 1: Đặt \(g\left(x\right)=f\left(x\right)\left(x-m\right)\Leftrightarrow x^3+ax^2+bx+2=\left(x-1\right)\left(x+2\right)\left(x-m\right)\)

\(\Leftrightarrow x^3+ax^2+bx+2=x^3+\left(1-m\right)x^2+\left(-m-2\right)x+2m\)

Đồng nhất hệ số 2 vế ta được: \(\hept{\begin{cases}a=1-m\\b=-m-2\\2=2m\end{cases}}\Leftrightarrow\hept{\begin{cases}m=1\\a=0\\b=-3\end{cases}}\)

Vậy a=0,b=-3

Cách 2:

Ta có: \(\hept{\begin{cases}f\left(1\right)=0\\f\left(-2\right)=0\end{cases}}\Rightarrow\hept{\begin{cases}g\left(1\right)=0\\g\left(-2\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}1^3+a.1^2+b.1+2=0\\\left(-2\right)^3+a.\left(-2\right)^2+b.\left(-2\right)+2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+b=-3\\4a-2b=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=-3\end{cases}}\)

Vậy a=0,b=-3

1 tháng 5 2021

a, mình bổ sung cho đề là \(5x^2+6x-\frac{1}{3}\)( hoặc là trừ thì cũng làm tương tự :) 

Ta có : \(f\left(x\right)+g\left(x\right)\)hay \(5x^2-2x+5+5x^2+6x-\frac{1}{3}=10x^2+4x+\frac{14}{3}\)

b, Ta có : \(f\left(x\right)-g\left(x\right)\)hay 

\(5x^2-2x+5-5x^2-6x+\frac{1}{3}=-8x+\frac{16}{3}\)

c, Đặt \(-8x+\frac{16}{3}=0\Leftrightarrow-8\left(x-\frac{2}{3}\right)=0\Leftrightarrow x=\frac{2}{3}\)

Vậy x = 2/3 là nghiệm đa thức trên 

2 tháng 5 2021

a, Ta có : \(f\left(x\right)+g\left(x\right)\)hay \(5x^2-2x+5+5x^2-6x-\frac{1}{3}=10x^2-8x+\frac{14}{3}\)

b, Ta có : \(f\left(x\right)-g\left(x\right)\)hay \(5x^2-2x+5-5x^2+6x+\frac{1}{3}=4x+\frac{16}{3}\)

c, Đặt \(f\left(x\right)-g\left(x\right)=0\)hay \(4x+\frac{16}{3}=0\)

\(\Leftrightarrow4x=-\frac{16}{3}\Leftrightarrow x=-\frac{16}{8}=-2\)