K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2021

Đặt \(g\left(x\right)=32x-142\).

Ta có \(f\left(5\right)-g\left(5\right)=f\left(6\right)-g\left(6\right)=0\Rightarrow f\left(x\right)-g\left(x\right)=Q\left(x\right)\left(x-5\right)\left(x-6\right)\).

\(\Rightarrow f\left(11\right)=g\left(11\right)+Q\left(x\right).30=210+Q\left(x\right).30⋮30\).

 

28 tháng 2 2021

Mình làm theo kiểu khác để cho bạn rõ hơn:

Đặt \(g\left(x\right)=32x-142\Rightarrow\left\{{}\begin{matrix}g\left(5\right)=18\\g\left(6\right)=50\end{matrix}\right.\).

Đặt \(h\left(x\right)=f\left(x\right)-g\left(x\right)\). Khi đó \(h\left(5\right)=f\left(5\right)-g\left(5\right)=18-18=0;h\left(6\right)=f\left(6\right)=g\left(6\right)=50-50=0\).

Do \(h\left(5\right)=h\left(6\right)=0\) nên \(h\left(x\right)\) chia hết cho hai đa thức \(x-5\) và \(x-6\) (đoạn này mình mong bạn hiểu).

Từ đó tồn tại Q(x) sao cho \(h\left(x\right)=\left(x-5\right)\left(x-6\right)Q\left(x\right)\).

Suy ra \(f\left(x\right)=g\left(x\right)+h\left(x\right)=32x-142+\left(x-5\right)\left(x-6\right)Q\left(x\right)\Rightarrow f\left(11\right)=32.11-142+5.6.Q\left(x\right)=210+30.Q\left(6\right)\).

Do f(x) có các hệ số nguyên, g(x) có các hệ số nguyên nên h(x) cũng có các hệ số nguyên.

Do đó Q(x) cũng có các hệ số nguyên.

Suy ra \(f\left(6\right)=210+30.Q\left(x\right)⋮30\).

 

AH
Akai Haruma
Giáo viên
1 tháng 3 2021

Lời giải:

Đặt $f(x)=a_0+a_1x+a_2x^2+..+a_nx^n$ với $a_i$ nguyên với $i=\overline{0,n}$

Ta có:

\(f(a)=a_0+a_1a+a_2a^2+...+a_na^n; f(b)=a_0+a_1b+a_2b^2+...+a_nb^n\)

\(\Rightarrow f(a)-f(b)=a_1(a-b)+a_2(a^2-b^2)+...+a_n(a^n-b^n)\)

Dễ thấy: $a^j-b^j\vdots a-b$ với mọi $j\geq 1$ nên $f(a)-f(b)\vdots a-b$

 Ta có đpcm.

28 tháng 2 2021

Giả sử \(f\left(x\right)=m_nx^n+m_{n-1}x^{n-1}+...+m_1x+m_0\) với \(m_0;m_1;...;m_n\in Z\).

Ta có \(f\left(a\right)-f\left(b\right)=m_n\left(a^n-b^n\right)+m_{n-1}\left(a^{n-1}-b^{n-1}\right)+...+m_1\left(a-b\right)\).

Dễ thấy tổng trên chia hết cho a - b với mọi a, b nguyên.

Vậy ta có đpcm.