K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AH
Akai Haruma
Giáo viên
1 tháng 3 2021
Lời giải:
Đặt $f(x)=a_0+a_1x+a_2x^2+..+a_nx^n$ với $a_i$ nguyên với $i=\overline{0,n}$
Ta có:
\(f(a)=a_0+a_1a+a_2a^2+...+a_na^n; f(b)=a_0+a_1b+a_2b^2+...+a_nb^n\)
\(\Rightarrow f(a)-f(b)=a_1(a-b)+a_2(a^2-b^2)+...+a_n(a^n-b^n)\)
Dễ thấy: $a^j-b^j\vdots a-b$ với mọi $j\geq 1$ nên $f(a)-f(b)\vdots a-b$
Ta có đpcm.
28 tháng 2 2021
Giả sử \(f\left(x\right)=m_nx^n+m_{n-1}x^{n-1}+...+m_1x+m_0\) với \(m_0;m_1;...;m_n\in Z\).
Ta có \(f\left(a\right)-f\left(b\right)=m_n\left(a^n-b^n\right)+m_{n-1}\left(a^{n-1}-b^{n-1}\right)+...+m_1\left(a-b\right)\).
Dễ thấy tổng trên chia hết cho a - b với mọi a, b nguyên.
Vậy ta có đpcm.
Đặt \(g\left(x\right)=32x-142\).
Ta có \(f\left(5\right)-g\left(5\right)=f\left(6\right)-g\left(6\right)=0\Rightarrow f\left(x\right)-g\left(x\right)=Q\left(x\right)\left(x-5\right)\left(x-6\right)\).
\(\Rightarrow f\left(11\right)=g\left(11\right)+Q\left(x\right).30=210+Q\left(x\right).30⋮30\).
Mình làm theo kiểu khác để cho bạn rõ hơn:
Đặt \(g\left(x\right)=32x-142\Rightarrow\left\{{}\begin{matrix}g\left(5\right)=18\\g\left(6\right)=50\end{matrix}\right.\).
Đặt \(h\left(x\right)=f\left(x\right)-g\left(x\right)\). Khi đó \(h\left(5\right)=f\left(5\right)-g\left(5\right)=18-18=0;h\left(6\right)=f\left(6\right)=g\left(6\right)=50-50=0\).
Do \(h\left(5\right)=h\left(6\right)=0\) nên \(h\left(x\right)\) chia hết cho hai đa thức \(x-5\) và \(x-6\) (đoạn này mình mong bạn hiểu).
Từ đó tồn tại Q(x) sao cho \(h\left(x\right)=\left(x-5\right)\left(x-6\right)Q\left(x\right)\).
Suy ra \(f\left(x\right)=g\left(x\right)+h\left(x\right)=32x-142+\left(x-5\right)\left(x-6\right)Q\left(x\right)\Rightarrow f\left(11\right)=32.11-142+5.6.Q\left(x\right)=210+30.Q\left(6\right)\).
Do f(x) có các hệ số nguyên, g(x) có các hệ số nguyên nên h(x) cũng có các hệ số nguyên.
Do đó Q(x) cũng có các hệ số nguyên.
Suy ra \(f\left(6\right)=210+30.Q\left(x\right)⋮30\).