Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sigma CTV, mk ko hiểu lắm. Bn có thể giải ra chi tiết theo cách lp 8 cho mk dễ hiểu đc ko?? Cám ơn bn rất nhiều
Với mọi a , b , c \(\in\)R ta luôn có :
\(a^2\)+ \(b^2\)+ \(c^2\)> hoặc = \(2bc+2ca-2ab\left(1\right)\)
Ta cần chứng minh ( 1 ) là bất đẳng thức đúng
\(\Leftrightarrow\)\(a^2\)+ \(b^2\)+ \(c^2\)+ 2ab - 2bc - 2ca > hoặc = 0
\(\Leftrightarrow\)\(\left(a+b-c\right)^2\) > hoặc = 0 ( 2 )
Bất đẳng thức ( 2 ) luôn đúng với mọi a ; b ; c mà các phép biến đổi trên tương ứng
Nên bất đẳng thức ( 1 ) được chứng minh
Xảy ra khi và chỉ khi a + b = c
Mà \(a^2\)+ \(b^2\)+ \(c^2\)= \(\frac{5}{3}\)( gt )
Mà \(\frac{5}{3}\)= \(1\frac{2}{3}\)< 2 ( 3 )
Từ ( 1 ) kết hợp với ( 3 ) ta có thể viết :
2bc + 2ca - 2ab < hoặc = \(a^2\)+ \(b^2\)+ \(c^2\)< 2
\(\Rightarrow\)2bc + 2ca - 2ab < 2
Vì a ; b ; c > 0 nên chia cả 2 vế của bđt cho 2abc
\(\frac{2bc+2ca-2ab}{2abc}< \frac{2}{2abc}\)
\(\Leftrightarrow\)\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)
Vậy với a ; b ; c là các số dương thỏa mãn điều kiện : \(a^2\)+ \(b^2\)+ \(c^2\)= \(\frac{5}{3}\)thì ta luôn chứng minh được :
\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)
Lời giải:
Đặt biểu thức vế trái là A
Có \(a+\frac{1}{a+1}=\frac{a^2+a+1}{a+1}=\frac{a^2}{a+1}+1=\frac{a^2}{a+1}+\frac{1}{2}+\frac{1}{2}\)
Áp dụng BĐT Cauchy-Schwarz:
\(a+\frac{1}{a+1}\geq \frac{(a+1+1)^2}{a+1+2+2}=\frac{(a+2)^2}{a+5}\)
Thực hiện tương tự với các phân thức còn lại và nhân theo vế:
\(\Rightarrow A\geq \frac{(a+2)^2(b+2)^2(c+2)^2}{(a+5)(b+5)(c+5)}\)
Áp dụng BĐT AM-GM:
\((a+2)(b+2)(c+2)\geq 3\sqrt[3]{a}.3\sqrt[3]{b}.3\sqrt[3]{c}=27\sqrt[3]{abc}\geq 27\)
\(\Rightarrow A\geq \frac{27(a+2)(b+2)(c+2)}{(a+5)(b+5)(c+5)}\) (1)
Ta sẽ cm
\(\frac{27(a+2)(b+2)(c+2)}{(a+5)(b+5)(c+5)}\geq \frac{27}{8}(*)\Leftrightarrow 8(a+2)(b+2)(c+2)\geq (a+5)(b+5)(c+5)\)
\(\Leftrightarrow 8[abc+8+2(ab+bc+ac)+4(a+b+c)]\geq abc+125+5(ab+bc+ac)+25(a+b+c)\)
\(\Leftrightarrow 7abc+11(ab+bc+ac)+7(a+b+c)\geq 61\)
BĐT trên luôn đúng theo AM_GM:
\(7abc+11(ab+bc+ac)+7(a+b+c)\geq 7abc+33\sqrt[3]{a^2b^2c^2}+21\sqrt[3]{abc}\geq 7+33+21=61\)
Do đó (*) đúng.
Từ \((1);(2)\Rightarrow A\geq \frac{27}{8}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=1\)
a)\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
=\(\dfrac{a}{a}+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{b}+\dfrac{b}{a}+\dfrac{b}{c}+\dfrac{c}{c}+\dfrac{c}{a}+\dfrac{c}{b}\)
=\(1+1+1+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\)
=3+\(\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\)
áp dụng BĐT cô si ta có
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}\)
⇔ \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
cmtt ta có \(\dfrac{b}{c}+\dfrac{c}{b}\ge2\); \(\dfrac{a}{c}+\dfrac{c}{a}\ge2\)
=> 3+\(\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\ge9\)
=> \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\left(đpcm\right)\)
a)Áp dụng bđt AM-GM cho 3 số không âm ta có:
\(a+b+c\ge3\sqrt[3]{abc}\)
TT\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)
Nhân vế theo vế ta có:\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\dfrac{1}{abc}}=9\left(đpcm\right)\)
b)\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ba}+\dfrac{c^2}{ca+cb}\)
Svac-xo:
\(\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ba}+\dfrac{c^2}{ca+cb}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Lại có:\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)(tự cm)
\(\Rightarrow\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ba}+\dfrac{c^2}{ca+cb}\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)
\(\Rightarrowđpcm\)
\(VT=\dfrac{a}{2b+c}+\dfrac{b}{2c+a}+\dfrac{c}{2a+b}\)
\(VT=\dfrac{a^2}{2ab+ac}+\dfrac{b^2}{2bc+ab}+\dfrac{c^2}{2ac+bc}\)
\(VT\ge\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=1\)
Dấu "=" xảy ra khi \(a=b=c\)
Này Nguyễn Việt Lâm Giáo viên, cái dòng số 3 là sao vậy? Bn có thể giải thích rõ dc ko??