\(P=\dfrac{3x-2\sqrt{3x}+1}{\sqrt{3x}-2}\). Tìm x thuộc Z để P thu...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

P nguyên

=>1 chia hết cho căn3x -2

=>căn(3x)-2=1 hoặc căn(3x)-2=-1

=>căn3x=3 hoặc căn3x=1

=>3x=1 hoặc 3x=9

=>x=3 hoặc x=1/3(loại)

5 tháng 9 2016

khó !!!

5 tháng 9 2016

Cứ quy đồng là ra à. Làm biếng trình bày quá. Nên cho bạn đáp số thôi nhé

a/ \(\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\)

b/ x = 3 và A = 4

20 tháng 10 2018

1) +) ta có : \(C-\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{3}=\dfrac{3\sqrt{x}-x+\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{-\left(x-4\sqrt{x}+4\right)+3}{3\left(x+\sqrt{x}+1\right)}=\dfrac{-\left(\sqrt{x}-2\right)^2+3}{3\left(x+\sqrt{x}+1\right)}\)

không thể cm được đâu bn --> xem lại đề

2) +) ta có : \(D=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)

--> để \(D\in Z\Leftrightarrow\sqrt{x}+2\) là ước của 3 \(\Leftrightarrow\sqrt{x}+2\in\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow x=1\) vậy \(x=1\)

3) +) tương tự 2)

4) a) +) điều kiện xác định : \(x>0;x\ne4\)

ta có : \(A=\left(\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}}\right):\dfrac{\sqrt{x}-2}{x+3\sqrt{x}}\)

\(\Leftrightarrow A=\left(\dfrac{2\sqrt{x}-\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)

b) ta có : \(A=3\Leftrightarrow\dfrac{\sqrt{x}-3}{\sqrt{x}-2}=3\Leftrightarrow\sqrt{x}-3=3\sqrt{x}-6\)

\(\Leftrightarrow2\sqrt{x}=3\Leftrightarrow\sqrt{x}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{9}{4}\) vậy \(x=\dfrac{9}{4}\)

c) ta có : \(B=A.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{x-9}{x-4}=1-\dfrac{5}{x-4}\)

tương tự 2 )
\(\)

13 tháng 8 2018

a/ đkxđ: x >=0; x khác 1

\(Q=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}}=\dfrac{3x+\sqrt{9x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

b/ Q là số nguyên <=> \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\in Z\)

Có: \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\dfrac{2}{\sqrt{x}-1}\)

=> \(\sqrt{x}-1\inƯ\left(2\right)\)

\(\Leftrightarrow\sqrt{x}-1=\left\{-2;-1;1;2\right\}\)

\(\Leftrightarrow\sqrt{x}=\left\{0;2;3\right\}\)

\(\Leftrightarrow x=\left\{0;4;9\right\}\) (TM)

Vậy.........

13 tháng 8 2020

c) Đk: x \(\ge\)0; x \(\ne\)4; x \(\ne\)9

A = \(-\frac{1}{\sqrt{x}-3}\) => -2A = \(\frac{2}{\sqrt{x}-3}\)

Để -2A thuộc Z <=> \(2⋮\sqrt{x}-3\)

<=> \(\sqrt{x}-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Lập bảng: 

\(\sqrt{x}-3\)    1    -1   2   -2
    x     8   4 (ktm) 25 1

Vậy ....

Câu a :

Ta có : \(\sqrt{5+3x}-\sqrt{5-3x}=a\)

\(\Leftrightarrow\left(\sqrt{5+3x}-\sqrt{5-3x}\right)^2=a^2\)

\(\Leftrightarrow5+3x-2\sqrt{\left(5+3x\right)\left(5-3x\right)}+5-3x=a^2\)

\(\Leftrightarrow10-2\sqrt{25-9x^2}=a^2\)

\(\Leftrightarrow2\sqrt{25-9x^2}=10-a^2\)

\(\Leftrightarrow\sqrt{25-9x^2}=\dfrac{10-a^2}{2}\)

\(\Leftrightarrow25-9x^2=\dfrac{\left(a^2-10\right)^2}{2}\)

\(\Leftrightarrow9x^2=25-\dfrac{\left(a^2-10\right)^2}{2}\)

\(\Leftrightarrow3x=\sqrt{\dfrac{50-\left(a^2-10\right)^2}{2}}\)

\(\Leftrightarrow x=\dfrac{\sqrt{50-\left(a^2-10\right)^2}}{3\sqrt{2}}\)

\(P=\dfrac{3\sqrt{2}.\sqrt{10+2\sqrt{\dfrac{10-a^2}{2}}}}{\sqrt{50-\left(a^2-10\right)^2}}\)

Bạn tự rút gọn nữa nhé :))

Câu b : \(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-24}{z}\)

\(=\dfrac{x-3}{x}+\dfrac{y-3}{y}+\dfrac{z-12}{z}\)

\(=3-3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{4}{z}\right)\le3-3\left[\dfrac{\left(1+1+2\right)^2}{12}\right]=-1\)