Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)\(đkxđ\Leftrightarrow\)\(\hept{\begin{cases}x+3\ne0\\x-3\ne0\end{cases}}\)\(\Rightarrow x\ne\pm3\)
\(b,\)\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{x^2-9}\)
\(=\frac{5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{5x+3}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{5x-15+3x+9-5x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{3x-9}{\left(x-3\right)\left(x+3\right)}=\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3}{x+3}\)
\(c,\)Tại x = 6, ta có :
\(B=\frac{3}{x+3}=\frac{3}{6+3}=\frac{3}{9}=\frac{1}{3}\)
Vậy tại x = 6 thì B = 3
\(d,\)Để \(B\in Z\Rightarrow\frac{3}{x+3}\in Z\Rightarrow x+3\inƯ_3\)
Mà \(Ư_3=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\)TH1 : \(x+3=1\Rightarrow x=-2\)
Th2: \(x+3=-1\Rightarrow x=-4\)
Th3 : \(x+3=3\Rightarrow x=0\)
TH4 \(x+3=-3\Rightarrow x=-6\)
Vậy để \(B\in Z\)thì \(x\in\left\{-6;-4;-2;0\right\}\)
a)Để B đc xác định thì :x+3 khác 0
x-3 khác 0
x^2-9 khác 0
=>x khác -3
x khác 3
b) Kết Qủa BT B là:3/x+3
a/ ĐKXĐ: \(x\ne3;-3;2\)
\(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{3-x}=\frac{x+2}{x+3}-\frac{5}{x^2+3x-2x-6}+\frac{-1}{x-3}=\frac{x+2}{x+3}-\frac{5}{\left(x^2-2x\right)+\left(3-6x\right)}\)
\(+\frac{-1}{x-3}=\frac{x+2}{x+3}-\frac{5}{\left(x-2\right)\left(x+3\right)}+\frac{-1}{x-3}\)
Đến đây bạn tự quy đồng nhé! Chúc sớm giải được. Cố lên!!!!!
\(A=x^2+4y^2-2xy+4x-10y+2020.\)
\(=\left(x^2-2xy+y^2\right)+\left(3y^2-6y+3\right)+\left(4x-4y\right)+2017\)
\(=\left(x-y\right)^2+3\left(y-1\right)^2+4\left(x-y\right)+2017\)
\(=\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]+3\left(y-1\right)^2+2013\)
\(=\left(x-y+2\right)^2+3\left(y-1\right)^2+2013\)
\(A_{min}=2013\Leftrightarrow\hept{\begin{cases}\left(x-y+2\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-y+2=0\\y=1\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)
\(B=8x^2+y^2-4xy-12x+2y+30\)
\(=\left(4x^2-4xy+y^2\right)+\left(4x^2-8x+4\right)-\left(4x-2y\right)+26\)
\(=\left(2x-y\right)^2+4\left(x-1\right)^2-2\left(2x-y\right)+26\)
\(=\left[\left(2x-y\right)^2-2\left(2x-y\right)+1\right]+4\left(x-1\right)^2+25\)
\(=\left(2x-y-1\right)^2+4\left(x-1\right)^2+25\)
\(\Rightarrow B_{min}=25\)\(\Leftrightarrow\hept{\begin{cases}\left(2x-y-1\right)^2=0\\\left(x-1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-y-1=0\\x=1\end{cases}}\)\(\Leftrightarrow x=y=1\)
a
\(ĐKXĐ:x\ne3;x\ne-3;x\ne0\)
b
\(A=\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)
\(=\left[\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right]:\left[\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right]\)
\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\frac{3x-9-x^2}{3x\left(x+3\right)}\)
\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\cdot\frac{3x\left(x+3\right)}{-\left(9-3x+x^2\right)}=\frac{-3}{x-3}\)
c
Với \(x=4\Rightarrow A=-3\)
d
Để A nguyên thì \(\frac{3}{x-3}\) nguyên
\(\Rightarrow3⋮x-3\)
Làm nốt.
A=−x2−12x+3=−(x2+12x+36)+39=−(x+6)2+39≤39
Vậy GTLN của A là 39 khi x = -6
B=7−4x2+4x=−(4x2−4x+1)+8=−(2x−1)2+8≤8
Vậy GTLN của B là 8 khi x =
~Hok tốt~
\(S=x^2+5y^2+4xy-6x-16y+2031\)
\(\Rightarrow S=x^2+4y^2+y^2+4xy-6x-12y-4y+4+1918+9\)
\(\Rightarrow S=\left(x^2+4xy+4y^2\right)-6x-12y+\left(y^2-4y+4\right)+1918+9\)
\(\Rightarrow S=\left(x+2y\right)^2-6\left(x+2y\right)+\left(y-2\right)^2+1918+9\)
\(\Rightarrow S=\left[\left(x+2y\right)^2-6\left(x+2y\right)+9\right]+\left(y-2\right)^2+1918\)
\(\Rightarrow\left[\left(x+y\right)^2-2.3\left(x+2y\right)+3^2\right]+\left(y-2\right)^2+1918\)
\(\Rightarrow\left(x+y-3\right)^2+\left(y+2\right)^2+1918\)
Vì: (x+y-3)^2+(y+2)^2 > 0
=> (x+y-3)^2+(y+2)^2+1918> 1918
Dấu "=" xảy ra khi x+y-3=0;y+2=0
Ta có: y+2=0=>y=0-2=>y=-2
Thay y=-2 vào x+y-3
x+(-2)-3=0=>x-5=0=>x=0-5=>x=-5
Vậy Smin=1918 khi x=-5;y=-2
a) Đk: x > 0 và x khác +-1
Ta có: A = \(\left(\frac{x+1}{x}-\frac{1}{1-x}-\frac{x^2-2}{x^2-x}\right):\frac{x^2+x}{x^2-2x+1}\)
A = \(\left[\frac{\left(x-1\right)\left(x+1\right)+x-x^2+2}{x\left(x-1\right)}\right]:\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)
A = \(\frac{x^2-1+x-x^2+2}{x\left(x-1\right)}\cdot\frac{\left(x-1\right)^2}{x\left(x+1\right)}\)
A = \(\frac{x+1}{x}\cdot\frac{x-1}{x\left(x+1\right)}=\frac{x-1}{x^2}\)
b) Ta có: A = \(\frac{x-1}{x^2}=\frac{1}{x}-\frac{1}{x^2}=-\left(\frac{1}{x^2}-\frac{1}{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\frac{1}{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> 1/x - 1/2 = 0 <=> x = 2 (tm)
Vậy MaxA = 1/4 <=> x = 2