K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

a/ 1/1.3 + 1/3.4+ .... + 1/9.10

= 1–1/3+1/3–1/4+1/4–1/5+...+1/8–1/9+1/9–1/10

=1–1/10

=10/10–1/10

=9/10

20 tháng 4 2016

A=1/1-1/2+1/3-1/4+1/5-1/6+...+1/199-1/200

A=1/1-1/200

A=199/200

câu típ mình chịu

20 tháng 4 2016

sai òi Big Boss ơi

Cám ơn bn đã giúp mình nhưng sai òi!

10 tháng 5 2018

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}-1-\frac{1}{2}-...-\frac{1}{1009}\)

\(A=\frac{1}{1010}+\frac{1}{2000}+...+\frac{1}{2018}\)

\(B=3028.\left(\frac{1}{1010.2018}+...+\frac{1}{2018.1010}\right)\)

\(B=\frac{3028}{1010.2018}+...+\frac{3028}{2018.1010}\)

\(B=\frac{1}{1010}+\frac{1}{2018}+...+\frac{1}{2018}+\frac{1}{1010}\)

\(B=2.\left(\frac{1}{1010}+...+\frac{1}{2018}\right)\)

\(=>\frac{A}{B}=\frac{1}{2}\)

10 tháng 5 2018

Linh Phương Ngô chứng minh a/b là số nguyên cơ mà

16 tháng 7 2020

thôi mik làm đc rồi

19 tháng 2 2020

\(A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{99\cdot100}\)

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{50}\)

\(A=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\) 

21 tháng 2 2020

Cảm ơn bạn Uyên nhiều nha!

^_^^_^^_^

4 tháng 5 2018

\(A=\frac{1}{2.2}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)

\(A=\frac{1}{4}+\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)\)

\(A=\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)

                          ( gạch bỏ các phân số giống nhau)

\(A=\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{9}\right)\)

\(A=\frac{1}{4}+\frac{2}{9}\)

\(A=\frac{17}{36}\)

phần b, c bn lm tương tự như phần a nha