K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

Mình gợi ý cho bạn nhé.

Câu 1:

ABCD là hình bình hành nên: AB =CD và AB song song với CD

Bạn tự chứng minh được MBND là hình bình hành vì MB= ND và MB song song với ND

Do đó: MD song song với BN hay MP song song với BQ

Xét tam giác ABQ có M là trung điểm của AB và MP song song với BQ

Suy ra: AP =PQ

Tương tự với tam giác PDC, ta cũng có: PQ =QC

Vậy AP=PQ=QC.

Câu 2:

MN là đường trung bình của tam giác ABC nên MN song song với BC và MN=1/2 BC.

PQ là đường trung bình của tam giác BCG do đó: PQ song song với BC và PQ =1/2 BC

Vậy MN song song với PQ và MN=PQ

VÌ thế MNPQ là hình bình hành (DHNB)

Chúc bạn học tốt.

17 tháng 8 2021

a) AECF là hình bình hành

b)mk ko biết 

c) sai đề

4 tháng 10 2021

không biết tớ trả trước mà

4 tháng 10 2021

a. Tứ giác ABCD là hình bình hành.

AB=CD⇒AB=CD(tính chất hình bình hành)

và AB//CDˆABD=ˆBDCAB//CD⇒ABD^=BDC^(so le trong)

Xét ΔAMBΔAMBvà ΔCNDΔCNDcó:

AB=CDAB=CD(cmt)

ˆABM=ˆCDNABM^=CDN^(cmt)

BM=DNBM=DN(GT)

ΔAMB=ΔCND(c.g.c)⇒ΔAMB=ΔCND(c.g.c)

b. Có AC cắt BD tại O

=> O là trung điểm của AC => OA = OC.

=> O là trung điểm của BD => OB = OD.

Có OB = OM + MD 

OD = ON + ND

mà OB = OD, MB = ND

=> OM = ON => O là trung điểm của MN.

Trong tứ giác AMCN có:

OA = OC, OM = ON

=> Tứ giác AMCN có 2 đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.

a) * Vì ABCD là hình bình hành(gt)

=> \(\widehat{A}=\widehat{C}\)\(\widehat{B}=\widehat{D};AD=BC;AB//CD\)tính chất)

_ Ta có AM là tia phân giác của GÓC A => \(\widehat{A_1}=\widehat{A_2}=\frac{\widehat{A}}{2}\left(1\right)\)

_Ta có CN là tia phân giác của GÓC C =>\(\widehat{C_1}=\widehat{C_2}=\frac{\widehat{C}}{2}\left(2\right)\)

_ Từ (1) (2) => \(\widehat{A_1}=\widehat{C_2}\)

* Xét \(\Delta ADM\) và \(\Delta CBN\)có:

\(\widehat{A_1}=\widehat{C_2}\)cmt)

AD=BC( cmt)

GÓC B=GÓC D

=> \(\Delta ADM=\Delta CBN\left(g.c.g\right)\)

=>AM=CN (3) ( 2 cạnh tuiwng ứng)

\(\widehat{M_1}=\widehat{N_1}\) ( 2 góc tương ứng)

* Mà AB//CD( gt) 

\(N\in AB;M\in CD\left(gt\right)\)

=>BN//CM => \(\widehat{N_1}=\widehat{C_1}\)2 góc SLT)

=> \(\widehat{M_1}=\widehat{C_1}\)

Mà 2 góc này ở vị trí Đồng vị

=> AM//CN(4)

* Từ (3)(4) 

=> AMCN là hình bình hành

_ Cậu tự vẽ hình xong đặt chỉ số ạ_

_tham khảo bài àm trên đây ạ, chúc cậu học tốt '.'