Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sử dụng bất đẳng thức AM-GM ta có : \(\left(\frac{1}{a^2}+1\right)\left(\frac{1}{b^2}+2\right)\left(\frac{1}{c^2}+8\right)\ge2\sqrt{\frac{1}{a^2}}.2\sqrt{\frac{2}{b^2}}.2\sqrt{\frac{8}{c^2}}=8.\sqrt{16}.\frac{1}{abc}=\frac{32}{abc}\)
Dấu "=" xảy ra khi và chỉ khi ...
Áp dụng bất đẳng thức cô -si cho 2 số dương , ta có :
\(\hept{\begin{cases}\frac{1}{a^2}+1\ge2\sqrt{\frac{1}{a^2}}=\frac{2}{a}\\\frac{1}{b^2}+2\ge2\sqrt{\frac{1}{b^2}.2}=\frac{2\sqrt{2}}{b}\\\frac{1}{c^2}+8\ge2\sqrt{\frac{1}{c^2}.8}=\frac{4\sqrt{2}}{c}\end{cases}}\)
Nhân vế với vế ts có :
\(\left(\frac{1}{a^2}+1\right)\left(\frac{1}{b^2}+2\right)\left(\frac{1}{c^2}+8\right)\ge\frac{32}{abc}\left(đpcm\right)\)
Đây nhé
Đặt b + c = x ; c + a = y ; a + b = z
\(\Rightarrow\hept{\begin{cases}x+y=2c+b+a=2c+z\\y+z=2a+b+c=2a+x\\x+z=2b+a+c=2b+y\end{cases}}\)
\(\Rightarrow\frac{x+y-z}{2}=c;\frac{y+z-x}{2}=a;\frac{x+z-y}{2}=b\)
Thay vào PT đã cho ở đề bài , ta có :
\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)
\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\)
\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)
( cái này cô - si cho x/y + /x ; x/z + z/x ; y/z + z/y)
\(\frac{1}{c^2\left(a+b\right)}\ge\frac{3}{2};\frac{z^3}{x\left(y+2z\right)}\ge\frac{x+y+z}{3}\)
2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.
Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)
\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)
Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)
Từ (2) và (3) ta có đpcm.
Sai thì chịu
Xí quên bài 2 b:v
b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)
Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)
\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)
Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)
Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)
\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
Bài 2:b) \(9=\left(\frac{1}{a^3}+1+1\right)+\left(\frac{1}{b^3}+1+1\right)+\left(\frac{1}{c^3}+1+1\right)\)
\(\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\therefore\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)
Ta sẽ chứng minh \(P\le\frac{1}{48}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
Ai có cách hay?
1/Đặt a=1/x,b=1/y,c=1/z ->x+y+z=1.
2a) \(VT=\frac{\left(\frac{1}{a^3}+\frac{1}{b^3}\right)\left(\frac{1}{a}+\frac{1}{b}\right)}{\frac{1}{a}+\frac{1}{b}}\ge\frac{\left(\frac{1}{a^2}+\frac{1}{b^2}\right)^2}{\frac{1}{a}+\frac{1}{b}}\)
\(=\frac{\left[\frac{\left(a^2+b^2\right)^2}{a^4b^4}\right]}{\frac{a+b}{ab}}=\frac{\left(a^2+b^2\right)^2}{a^3b^3\left(a+b\right)}\ge\frac{\left(a+b\right)^3}{4\left(ab\right)^3}\)
\(\ge\frac{\left(a+b\right)^3}{4\left[\frac{\left(a+b\right)^2}{4}\right]^3}=\frac{16}{\left(a+b\right)^3}\)
Áp dụng Côsi:
\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{8}+\frac{c+1}{8}\ge3\sqrt[3]{\frac{a^3}{\left(b+1\right)\left(c+1\right)}.\frac{b+1}{8}.\frac{c+1}{8}}=\frac{3}{4}a\)
Tương tự: \(\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c+1}{8}+\frac{a+1}{8}\ge\frac{3}{4}b\)
\(\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{b+1}{8}\ge\frac{3}{4}c\)
\(\Rightarrow\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{1}{4}\left(a+b+c+3\right)\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c^3}{\left(a+1\right)\left(b+1\right)}\ge\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\)
\(\ge\frac{1}{2}.3\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{2}.1=\frac{3}{4}=\frac{3}{4}\)\(\left(\text{đpcm}\right)\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)
BĐT \(\Leftrightarrow\left(a+b+c\right)^2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{9}{2}\left(a+b+c\right)\) (nhân hai vế với 3 rồi áp dụng BĐT Bunhicopxki vào VT rồi dùng t/c bắc cầu)
Do a, b, c > 0 nên a + b + c > 0. BĐT <=> \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{9}{2\left(a+b+c\right)}\)
(luôn đúng theo BĐT Cauchy-Schwarz dạng Engel)
Ta có đpcm.
Bài ezzz =))))
\(VT=\frac{\frac{1}{a^2}}{a\left(b+c\right)}+\frac{\frac{1}{b^2}}{b\left(c+a\right)}+\frac{\frac{1}{c^2}}{c\left(a+b\right)}\)
Áp dụng bđt Bunhiacopski ta có
\(VT\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{a^2b^2c^2}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
cách 2 . đặt ẩn phụ nhé bro
Đặt \(\left\{\frac{1}{a};\frac{1}{b};\frac{1}{c}\right\}\rightarrow\left\{x;y;z\right\}\)\(\Rightarrow xyz=1\), khi đó :
Bất đẳng thức cần chứng minh tương đương :\(\frac{1}{\left(\frac{1}{x}\right)^2\left(\frac{1}{y}+\frac{1}{z}\right)}+\frac{1}{\left(\frac{1}{y}\right)^2\left(\frac{1}{z}+\frac{1}{x}\right)}+\frac{1}{\left(\frac{1}{z}\right)^2\left(\frac{1}{x}+\frac{1}{y}\right)}\ge\frac{3}{2}\)
\(< =>\frac{x^3yz}{y+z}+\frac{xy^3z}{z+x}+\frac{xyz^3}{x+y}\ge\frac{3}{2}< =>\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{3}{2}\)
Sử dụng bất đẳng thức AM-GM ta có : \(\left(\frac{x^2}{y+z}+\frac{y+z}{4}\right)+\left(\frac{y^2}{x+z}+\frac{x+z}{4}\right)+\left(\frac{z^2}{x+y}+\frac{x+y}{4}\right)\ge2\sqrt{\frac{x^2}{4}}+2\sqrt{\frac{y^2}{4}}+2\sqrt{\frac{z^2}{4}}=\frac{2x}{2}+\frac{2y}{2}+\frac{2z}{2}=x+y+z\)
Suy ra :\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+\frac{x+y+y+z+z+x}{4}\ge x+y+z< =>\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\)
Theo đánh giá của AM-GM thì : \(\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)Từ đó ta suy ra được :
\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\ge\frac{3}{2}\left(đpcm\right)\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1< =>a=b=c=1\)
xin lỗi nhé bên trên do đánh nó không hiện nên tưởng không viết được ,
Cộng từng vế của 3 bđt cùngc hiều ta có \(A+\frac{a+b+c+3}{4}>=\frac{3}{4}\left(a+b+c\right)\)
=> \(A>=\frac{a+b+c}{2}-\frac{3}{4}\)
Áp dụng bđts cô si ta có a+b+c>=\(3\sqrt[3]{abc}=3\)
=> A>=\(\frac{3}{4}\)
mình làm hơi tắt cậu chịu khó đọc nhé
bài này Áp dụng bất đẳng thức cô si nhé
đặt \(A=\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)
ta có Áp dựng bất đẳng thức cô si ta có \(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}>=3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)
tương tự ta có \(\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}>=\frac{3b}{4}\)
\(\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1_{1+a}}{8}+\frac{1+b}{8}>=\frac{3c}{4}\)
cộng từng vế của 3 bđt cùng chiều ta có \(A>=\frac{3\left(a+b+c\right)}{4}\)
mà