K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2020

Bài này mình làm một lần ở trường rồi nhưng không có điện thoại chụp được:((

Ta có: \(\dfrac{a^3}{\left(a-b\right)\left(a-c\right)}+\dfrac{b^3}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^3}{\left(c-a\right)\left(c-b\right)}=\dfrac{a^3\left(c-b\right)+b^3\left(a-c\right)-c^3\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}\)\(=\dfrac{a^3\left(c-b\right)+b^3a-b^3c-c^3a+c^3b}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{a^3\left(c-b\right)-a\left(c^3-b^3\right)+bc\left(c^2-b^2\right)}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{a^3\left(c-b\right)-a\left(c-b\right)\left(a^2+bc+b^2\right)+bc\left(c-b\right)\left(c+b\right)}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}\)\(=\dfrac{\left(c-b\right)\left(a^3-ac^2-abc-ab^2+bc^2+b^2c\right)}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}=\dfrac{\left(c-b\right)\left[a\left(a^2-b^2\right)-c^2\left(a-b\right)-bc\left(a-b\right)\right]}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}\)\(=\dfrac{\left(c-b\right)\left[a\left(a-b\right)\left(a+b\right)-c\left(a-b\right)-bc\left(a-b\right)\right]}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{\left(c-b\right)\left(a-b\right)\left(a^2+ab-c-bc\right)}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}\)

\(\dfrac{\left(c-b\right)\left(a-b\right)\left[a^2-c^2+ab-bc\right]}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{\left(c-b\right)\left(a-b\right)\left[\left(a-c\right)\left(a+c\right)+b\left(a-c\right)\right]}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{\left(c-b\right)\left(a-b\right)\left(a-c\right)\left(a+b+c\right)}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}\)\(=a+b+c\)

Vì a, b, c là các số nguyên

=> a+b+c là các số nguyên

=> Đpcm.

Đấy mình làm chi tiết tiền tiệt lắm luôn, không hiểu thì mình chịu rồi, trời lạnh mà đánh máy nhiều thế này buốt tay lắm luôn:vv

5 tháng 12 2017

P = \(\frac{a^3}{\left(a-b\right)\left(a-c\right)}\)\(+\)\(\frac{b^3}{\left(b-a\right)\left(b-c\right)}\)\(+\)\(\frac{c^3}{\left(c-a\right)\left(c-b\right)}\)

   = \(\frac{a^3\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)\(+\)\(\frac{b^3\left(c-a\right)}{\left(b-a\right)\left(b-c\right)\left(c-a\right)}\)\(+\)\(\frac{c^3\left(a-b\right)}{\left(c-a\right)\left(c-b\right)\left(a-b\right)}\)

  = \(\frac{a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

Tử số = a3(b - c) + b3(c - a) + c3(a - b)

          = a3(b - c) - b3[(b - c) + (a - b)] + c3(a - b)

          = a3(b - c) - b3(b - c) - b3(a - b) + c3(a - b)

          = (b - c)(a3 - b3) - (a - b)(b3 - c3)

         = (b - c)(a - b)(a2 + ab + b2) - (a - b)(b - c)(b2 + bc + c2)

        = (a - b)(b - c)(a2 + ab + b2 - b2 - bc - c2)

       = (a - b)(b - c)(a2 + ab - bc - c2)

       = (a - b)(b - c)(a - c)(a + b + c)

Vậy  P = \(\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a+b+c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)= a + b + c

Vì a, b , c là các số nguyên đôi một khác nhau nên a + b + c là số nguyên

hay P có giá trị là 1 số nguyên

20 tháng 12 2020

Xét 2 TH sau:

TH1: a+b+c=0

Khi đó:

\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\\ =\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{c+a}{a}\\ =\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}\\ =-1\)

TH2: a+b+c khác 0

Ta có:

\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

Suy ra: a+b=2c; b+c=2a; c+a=2b

Do đó:

\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\\ =\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{c+a}{a}\\ =\dfrac{2c}{b}.\dfrac{2a}{c}.\dfrac{2b}{a}\\ =8\)

20 tháng 12 2020

Xét 2 TH sau:

TH1: a+b+c=0

Khi đó:

\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\\ =\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{c+a}{a}\\ =\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}\\ =-1\)

TH2: a+b+c khác 0

Ta có:

\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

Suy ra: a+b=2c; b+c=2a; c+a=2b

Do đó:

\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\\ =\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{c+a}{a}\\ =\dfrac{2c}{b}.\dfrac{2a}{c}.\dfrac{2b}{a}\\ =8\)

20 tháng 12 2020

TH1 : a + b + c ≠ 0

Áp dụng t/c dãy tỉ số bằng nhau ta có

\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{a+b+b+c+a+c}{a+b+c}=2\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\a+c=2b\end{matrix}\right.\)

Khi đó \(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)

\(=\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{a+c}{a}=\dfrac{2c}{b}.\dfrac{2a}{c}.\dfrac{2b}{a}=8\)

TH2 : a + b + c = 0

\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

Khi đó \(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)

\(=\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{a+c}{a}=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=-1\)

7 tháng 12 2023

Ta có: \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)\(=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

=> a+b=2c; b+c=2a; c+a=2b

Thay vào A ta được: A=((a+b)/b)((c+b)/c)((a+c)/a)

=2c/b.2a/c.2b/a=2.2.2=8

4 tháng 9 2017

Ta có:

\(\dfrac{b-c}{1\left(a-b\right)\left(a-c\right)}+\dfrac{c-a}{\left(b-c\right)\left(b-a\right)}+\dfrac{a-b}{\left(c-a\right)\left(c-b\right)}\)

\(=\dfrac{c-b}{1\left(a-b\right)\left(c-a\right)}+\dfrac{a-c}{\left(b-c\right)\left(a-b\right)}+\dfrac{b-a}{\left(c-a\right)\left(b-c\right)}\)

Quy đồng rút gọn ta được

\(=\dfrac{2\left(ab+bc+ca-a^2-b^2-c^2\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\dfrac{2\left[\left(a-b\right)\left(b-c\right)+\left(b-c\right)\left(c-a\right)+\left(c-a\right)\left(a-b\right)\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=2\left(\dfrac{1}{a-b}+\dfrac{1}{b-c}+\dfrac{1}{c-a}\right)\)

PS: Hôm qua đi chơi nên nay mới giải nhé.

12 tháng 12 2017

\(P=\dfrac{a^2}{\left(a-b\right)\left(a-c\right)}+\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^2}{\left(c-a\right)\left(c-b\right)}\)

\(=\dfrac{a^2\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}-\dfrac{b^2\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\dfrac{c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\dfrac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)

12 tháng 12 2017

Thank you = ))

AH
Akai Haruma
Giáo viên
13 tháng 7 2024

Lời giải:

$M=\frac{-ab(a-b)}{(a-b)(b-c)(c-a)}+\frac{-bc(b-c)}{(a-b)(b-c)(c-a)}+\frac{-ca(c-a)}{(a-b)(b-c)(c-a)}$

$=\frac{-[ab(a-b)+bc(b-c)+ca(c-a)]}{(a-b)(b-c)(c-a)}$

$=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}=1$