Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn trình bày rõ bđt 1/x + 1/y >_ 4/x+y dc ko vì mình ko hiểu lắm
bđt \(\Leftrightarrow\dfrac{\sqrt{bc}}{\sqrt{a}}+\dfrac{\sqrt{ca}}{\sqrt{b}}+\dfrac{\sqrt{ab}}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)
Ta có: \(\left(\dfrac{\sqrt{bc}}{\sqrt{a}}+\dfrac{\sqrt{ab}}{\sqrt{c}}\right)+\left(\dfrac{\sqrt{ca}}{\sqrt{b}}+\dfrac{\sqrt{bc}}{\sqrt{a}}\right)+\left(\dfrac{\sqrt{ab}}{\sqrt{c}}+\dfrac{\sqrt{ca}}{\sqrt{b}}\right)\ge2\sqrt{b}+2\sqrt{c}+2\sqrt{a}\)
\(\Leftrightarrow2\left(\dfrac{\sqrt{bc}}{\sqrt{a}}+\dfrac{\sqrt{ca}}{\sqrt{b}}+\dfrac{\sqrt{ab}}{\sqrt{c}}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\Leftrightarrow\dfrac{\sqrt{bc}}{\sqrt{a}}+\dfrac{\sqrt{ca}}{\sqrt{b}}+\dfrac{\sqrt{ab}}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\left(đpcm\right)\)
Vì vai trò của a,b,c là như nhau, giả sử
\(a\ge c\ge b>0\)
Ta có
\(a+b-c< a\)
\(\Leftrightarrow b-c\le0\) ( đúng với gt )
\(\Rightarrow a+b-c< a\)
\(\Leftrightarrow\left(a+b-c\right)^2< a^2\)
\(\Leftrightarrow\dfrac{1}{\left(a+b-c\right)^2}\ge\dfrac{1}{a^2}\)
CMTT :
\(\dfrac{1}{\left(b+c-a\right)^2}\ge\dfrac{1}{b^2};\dfrac{1}{\left(c+a-b\right)^2}\ge\dfrac{1}{c^2}\)
Cộng vế với vế 3 BĐT trên , được
\(\dfrac{1}{\left(a+b-c\right)^2}+\dfrac{1}{\left(b+c-a\right)^2}+\dfrac{1}{\left(c+a-b\right)^2}\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
Lời giải:
Từ \(a+b+c\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Rightarrow a+b+c\geq \frac{ab+bc+ac}{abc}\Rightarrow abc(a+b+c)\geq ab+bc+ac\)
\(\Rightarrow a^2b^2c^2(a+b+c)^2\geq (ab+bc+ac)^2(1)\)
Áp dụng BĐT AM-GM:
\(a^2b^2+b^2c^2\geq 2ab^2c\)
\(b^2c^2+c^2a^2\geq 2abc^2\)
\(a^2b^2+c^2a^2\geq 2a^2bc\)
Cộng theo vế, rút gọn \(\Rightarrow a^2b^2+b^2c^2+c^2a^2\geq abc(a+b+c)\)
\(\Rightarrow (ab+bc+ac)^2\geq 3abc(a+b+c)(2)\)
Từ \((1);(2)\Rightarrow a^2b^2c^2(a+b+c)^2\geq 3abc(a+b+c)\)
\(\Rightarrow abc(a+b+c)\geq 3\Rightarrow a+b+c\geq \frac{3}{abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
1. Đặt $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=T$
$\frac{a}{b+c}> \frac{a}{a+b+c}$
$\frac{b}{c+a}> \frac{b}{c+a+b}$
$\frac{c}{a+b}> \frac{c}{a+b+c}$
$\Rightarrow T> \frac{a+b+c}{a+b+c}=1$ (đpcm)
----
Xét hiệu:
$\frac{a}{b+c}-\frac{2a}{a+b+c}=\frac{-a(b+c-a)}{(b+c)(a+b+c)}<0$ theo BĐT tam giác
$\Rightarrow \frac{a}{b+c}< \frac{2a}{a+b+c}$
Tương tư: $\frac{b}{c+a}< \frac{2b}{c+a+b}$
$\frac{c}{a+b}< \frac{2c}{a+b+c}$
Cộng theo vế:
$T< \frac{2(a+b+c)}{a+b+c}=2$
$\frac{b}{a+c}
2.
Áp dụng BĐT AM-GM:
\(\frac{b+c}{a}.1\leq \frac{1}{4}(\frac{b+c}{a}+1)^2=\frac{(b+c+a)^2}{4a^2}\)
\(\Rightarrow \sqrt{\frac{a}{b+c}}\geq \frac{2a}{a+b+c}\)
Tương tự với các phân thức còn lại và cộng theo vế:
$\Rightarrow T\geq \frac{2(a+b+c)}{a+b+c}=2$
Dấu "=" xảy ra khi $b+c=a; c+a=b; a+b=c\Rightarrow a=b=c=0$ (vô lý)
Vậy dấu "=" không xảy ra, tức là $T>2>1$ (đpcm)
\(A=\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{4}{a+b-c+b+c-a}\ge\dfrac{4}{2b}\ge\dfrac{2}{b}\\\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{4}{b+c-a+c+a-b}\ge\dfrac{4}{2c}\ge\dfrac{2}{c}\\\dfrac{1}{a+b-c}+\dfrac{1}{c+a-b}\ge\dfrac{4}{a+b-c+c+a-b}\ge\dfrac{4}{2a}\ge\dfrac{2}{a}\end{matrix}\right.\)
\(\Rightarrow2\left(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\right)\ge\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Rightarrow A\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) \(dấu"="xảy\) \(ra\Leftrightarrow a=b=c\)