Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đăng từng bài thoy nha pn!!!
Bài 1:
Có : 2009 = 2008 + 1 = x + 1
Thay 2009 = x + 1 vào biểu thức trên,ta có :
x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010
= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)
= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1
= -2
câu 1:
theo bài ra: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
áp dụng tích chất tỉ lệ thức tá có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\left(\frac{a+b}{c+d}\right)^3\)
\(\Leftrightarrow\frac{a^3+b^3}{c^3+d^3}=\frac{\left(a+b\right)^3}{\left(c+d\right)^3}\left(đ.p.c.m\right)\)
a/b = c/d =) a/c=b/d
Tc dãy tỉ số:
+, a+b/c+d=a/c=b/d =) mũ 3 cả 3 vế nhá
+, a/c=b/d => mũ 3 cả 2 vế r công lại
Cc ra 2 kết luận đều = a/c=b/d mũ 3
Câu a nha
\(a^3+b^3=2\left(c^3-8d^3\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=2c^3-16d^3+c^3+d^3\)
\(=3c^3-15d^3=3\left(c^3-5d^3\right)⋮3\)
\(\Rightarrow a^3+b^3+c^3+d^3⋮3\)(1)
Ta có: \(a^3+b^3+c^3+d^3-a-b-c-d\)
\(=\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)\)
\(+\left(c-1\right)c\left(c+1\right)+\left(d-1\right)d\left(d+1\right)\)
Tích 3 số nguyên liên tiếp chia hết cho 3 nên
\(\left(a-1\right)a\left(a+1\right)⋮3\)
\(\left(b-1\right)b\left(b+1\right)⋮3\)
\(\left(c-1\right)c\left(c+1\right)⋮3\)
\(\left(d-1\right)d\left(d+1\right)⋮3\)
\(\Rightarrow\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)\)
\(+\left(c-1\right)c\left(c+1\right)+\left(d-1\right)d\left(d+1\right)⋮3\)
hay \(a^3+b^3+c^3+d^3-a-b-c-d⋮3\)(2)
Từ (1) và (2) suy ra \(a+b+c+d⋮3\left(đpcm\right)\)
-Ta có: a3-a= a.(a-1).(a+1) (với a thuộc Z). Mà a.(a-1).(a+1) là tích của 3 số nguyên liên tiếp nên a.(a-1).(a+1) chia hết cho 3.
=> a3-a chia hết cho 3.
-Chứng minh tương tự ta có b^3-b chia hết cho 3 và c^3-c chia hết cho 3 với mọi b,c thuộc Z.
=> a3+b3+c3 -(a+b+c) luôn chia hết cho 3 với mọi a,b,c thuộc Z.
=> nếu a3+b3+c3 chia hết cho 3 thì a+b+c chia hết cho 3 và điều ngược lại cũng đúng.
Vậy đpcm.chúc bn hok tốt
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{q^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
=> \(\frac{a^2}{4}=4\Rightarrow a^2=4.4=16\Rightarrow a=+-4\)
=>\(\frac{b^2}{9}=4\Rightarrow b^2=4.9=36\Rightarrow b=+-6\)
=>\(\frac{2c^2}{32}=4\Rightarrow c^2=4.32:2=64\Rightarrow c=+-8\)
Câu 2 :
Ta có : \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\left(1\right)\)
\(c^2=bd\Rightarrow\frac{c}{d}=\frac{b}{c}\left(2\right)\)
Từ (1);(2) dễ dàng suy ra:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a\cdot b\cdot c}{b\cdot c\cdot d}\)
\(=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\left(đpcm\right)\)
Ta có : \(a+b+c=0\)
\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\) ( 1 )
Ta có : \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^3=0\)
\(\Rightarrow\left[\left(a+b\right)+c\right]^3=0\)
\(\Rightarrow\left(a+b\right)^3+c^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2=0\)
\(\Rightarrow\left(a+b\right)^3+c^3+3\left(a+b\right)\left[\left(a+b\right)c+c^2\right]=0\)
\(\Rightarrow\left(a+b\right)^3+c^3+3\left(a+b\right)c\left(a+b+c\right)=0\)
\(\Rightarrow a^3+b^3+3a^2b+3ab^2+c^3+3\left(a+b\right)c\left(a+b+c\right)=0\)
\(\Rightarrow a^3+b^3+3ab\left(a+b\right)+c^3+3\left(a+b\right)c\left(a+b+c\right)=0\)
\(\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]=0\)
\(\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left(ab+ca+cb+c^2\right)=0\)
\(\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left[\left(ab+ca\right)+\left(cb+c^2\right)\right]=0\)
\(\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)
\(\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\) ( 2 )
Thay ( 1 ) vào ( 2 ) ta được :
\(\Rightarrow a^3+b^3+c^3+3.\left(-c\right).\left(-a\right).\left(-b\right)=0\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
\(a^3 + b^3 + c^3 = (a+b)(a^2-ab+b^2) + 3ab(a+b) + c^3 - 3ab(a+b)\)
\(= (a+b)^3 + c^3 - 3ab(a+b)\)
\(= (a+b+c)(a^2 + 2ab + b^2 + ac + bc + c^2) - 3ab(a+b) \)
\(= 0 - 3ab(a+b)\)
Từ \(a+b+c = 0 => a+b = -c\)
Thay vào ta được : \(-3ab(a+b) = -3ab(-c) = 3abc\)
Lẹ hơn xíu ~