K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 4 2021

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x^2;y^2;z^2\right)\) với \(x;y;z>0\Rightarrow xyz=1\)

Đặt vế trái của BĐT cần chứng minh là P

Ta có: \(P=\dfrac{1}{x^2+2y^2+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\)

\(P=\dfrac{1}{\left(x^2+y^2\right)+\left(y^2+1\right)+2}+\dfrac{1}{\left(y^2+z^2\right)+\left(z^2+1\right)+2}+\dfrac{1}{\left(z^2+x^2\right)+\left(x^2+1\right)+2}\)

\(P\le\dfrac{1}{2xy+2y+2}+\dfrac{1}{2yz+2z+2}+\dfrac{1}{2zx+2x+2}\)

\(P\le\dfrac{1}{2}\left(\dfrac{1}{xy+y+1}+\dfrac{1}{yz+z+1}+\dfrac{1}{zx+x+1}\right)=\dfrac{1}{2}\left(\dfrac{1}{xy+y+1}+\dfrac{xyz}{yz+z+xyz}+\dfrac{y}{xyz+xy+y}\right)\)

\(P\le\dfrac{1}{2}\left(\dfrac{1}{xy+y+1}+\dfrac{xy}{y+1+xy}+\dfrac{y}{1+xy+y}\right)=\dfrac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

Lời giải:

Theo hệ quả quen thuộc của BĐT AM-GM thì:

\((a+b+c)^2\geq 3(ab+bc+ac)\)

\(\Leftrightarrow (\sqrt{3})^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq 1\)

\(\Rightarrow \frac{a}{\sqrt{a^2+1}}\leq \frac{a}{\sqrt{a^2+ab+bc+ac}}=\frac{a}{\sqrt{(a+b)(a+c)}}\)

Hoàn toàn TT với các phân thức còn lại và cộng theo vế:

\(\Rightarrow \text{VT}\leq \frac{a}{\sqrt{(a+b)(a+c)}}+\frac{b}{\sqrt{(b+c)(b+a)}}+\frac{c}{\sqrt{(c+a)(c+b)}}\)

\(\leq \frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+c}+\frac{b}{b+a}\right)+\frac{1}{2}\left(\frac{c}{c+a}+\frac{c}{c+b}\right)\) (BĐT Cauchy)

hay \(\text{VT}\leq \frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)(đpcm)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

14 tháng 5 2023

bài này khó giúp hộ em với

 

NV
19 tháng 4 2022

Đề bài sai

Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)

19 tháng 4 2022

à mình quên < hặc =1/2

29 tháng 9 2017

\(A=\sum\sqrt{\dfrac{1}{1+a^2}}=\sum\sqrt{\dfrac{bc}{bc+a.abc}}=\sum\sqrt{\dfrac{bc}{bc+a\left(a+b+c\right)}}=\sum\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\sum\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}\right)=\dfrac{3}{2}\)

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Lời giải:
\(a+b+c=abc\Rightarrow a(a+b+c)=a^2bc\)

\(\Rightarrow a(a+b+c)+bc=bc(a^2+1)\)

\(\Leftrightarrow (a+b)(a+c)=bc(a^2+1)\)

\(\Leftrightarrow a^2+1=\frac{(a+b)(a+c)}{bc}\Rightarrow \frac{1}{\sqrt{a^2+1}}=\sqrt{\frac{bc}{(a+b)(a+c)}}\)

Áp dụng BĐT AM-GM:

\(\frac{1}{\sqrt{a^2+1}}=\sqrt{\frac{bc}{(a+b)(a+c)}}\leq \frac{1}{2}(\frac{b}{a+b}+\frac{c}{a+c})\)

Hoàn toàn tương tự:

\(\frac{1}{\sqrt{b^2+1}}=\sqrt{\frac{ac}{(b+a)(b+c)}}\leq \frac{1}{2}(\frac{a}{b+a}+\frac{c}{b+c})\)

\(\frac{1}{\sqrt{c^2+1}}=\sqrt{\frac{ab}{(c+a)(c+b)}}\leq \frac{1}{2}(\frac{a}{c+a}+\frac{b}{b+c})\)

Cộng theo vế:

\(\Rightarrow \frac{1}{\sqrt{a^2+1}}+\frac{1}{\sqrt{b^2+1}}+\frac{1}{\sqrt{c^2+1}}\leq \frac{1}{2}(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a})=\frac{3}{2}\)

Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=\sqrt{3}$

AH
Akai Haruma
Giáo viên
28 tháng 2 2019

Lời giải:
Vì $abc=1$ nên tồn tại $x,y,z$ sao cho : \((a,b,c)=\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)\)

Khi đó:

\(\text{VT}=\frac{1}{\sqrt{\frac{x}{z}+\frac{x}{y}+2}}+\frac{1}{\sqrt{\frac{y}{x}+\frac{y}{z}+2}}+\frac{1}{\sqrt{\frac{z}{y}+\frac{z}{x}+2}}=\frac{\sqrt{yz}}{\sqrt{xy+xz+2yz}}+\frac{\sqrt{xz}}{\sqrt{xy+yz+2xz}}+\frac{\sqrt{xy}}{\sqrt{xz+yz+2xy}}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}^2\leq (1+1+1)\left(\frac{yz}{xy+xz+2yz}+\frac{xz}{xy+yz+2xz}+\frac{xy}{xz+yz+2xy}\right)\)

\(\leq 3\left[\frac{yz}{4}\left(\frac{1}{xy+yz}+\frac{1}{xz+yz}\right)+\frac{xz}{4}\left(\frac{1}{xy+xz}+\frac{1}{xz+yz}\right)+\frac{xy}{4}\left(\frac{1}{xz+xy}+\frac{1}{yz+xy}\right)\right]\)

hay \(\text{VT}^2\leq \frac{3}{4}.\left(\frac{xy+yz}{xy+yz}+\frac{xy+xz}{xy+xz}+\frac{yz+xz}{yz+xz}\right)=\frac{9}{4}\)

\(\Rightarrow \text{VT}\leq \frac{3}{2}\) (đpcm)

Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c=1$

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

Lời giải:

\(a+b+c=abc\Rightarrow a(a+b+c)=a^2bc\)

\(\Rightarrow a(a+b+c)+bc=bc(a^2+1)\)

\(\Leftrightarrow (a+b)(a+c)=bc(a^2+1)\Rightarrow a^2+1=\frac{(a+b)(a+c)}{bc}\)

\(\Rightarrow \frac{1}{\sqrt{a^2+1}}=\sqrt{\frac{bc}{(a+b)(a+c)}}\)

Hoàn toàn tương tự với các phân thức còn lại

\(\Rightarrow \text{VT}=\frac{1}{\sqrt{a^2+1}}+\frac{1}{\sqrt{b^2+1}}+\frac{1}{\sqrt{c^2+1}}=\sqrt{\frac{bc}{(a+b)(a+c)}}+\sqrt{\frac{ac}{(b+a)(b+c)}}+\sqrt{\frac{ab}{(c+a)(c+b)}}\)

Áp dụng BĐT Cauchy:

\(\sqrt{\frac{bc}{(a+b)(a+c)}}+\sqrt{\frac{ac}{(b+a)(b+c)}}+\sqrt{\frac{ab}{(c+a)(c+b)}}\leq \frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)+\frac{1}{2}\left(\frac{a}{b+a}+\frac{c}{b+c}\right)+\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

\(=\frac{1}{2}\left(\frac{b+a}{b+a}+\frac{c+b}{c+b}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)

\(\Rightarrow \text{VT}\leq \frac{3}{2}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=\sqrt{3}$

18 tháng 5 2018

a) Ta có:

\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\left(\frac{2\sqrt{x}\left(\sqrt{x-3}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x-3}\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{3x+3}{x-9}\right):\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\left(\frac{2x-6}{x-9}+\frac{x+3\sqrt{x}}{x-9}-\frac{3x+3}{x-9}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\frac{2x-6+x+3\sqrt{x}-3x-3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\)

b) \(P< \frac{-1}{2}\Rightarrow\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}< \frac{-1}{2}\)

.....Chưa nghĩ ra....

c) Ta có: \(\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-3=0\Rightarrow x=9\)

Vậy Min P = 0 khi x =9.

k - kb với tớ nhia mn!