K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có

\(\sqrt{a+b}+\sqrt{a-b}< \sqrt{a+c}+\sqrt{a-c}\)

\(\Rightarrow\frac{\sqrt{a+b}+\sqrt{a-b}}{2}< \frac{\sqrt{a+c}+\sqrt{a-c}}{2}\)

\(\Rightarrowđpcm\)(liên hợp)

30 tháng 12 2018

Có lẽ là BĐT Cô-si

cứ cho a,b,c>0 thì phải nghĩ ngay đến BĐT cô-si

30 tháng 12 2018

\(A=\frac{a}{\sqrt{3+a^2}}+\frac{b}{\sqrt{3+b^2}}+\frac{c}{\sqrt{3+c^2}}\)

\(=\frac{a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+bc+ca+ab}}+\frac{c}{\sqrt{c^2+ca+ab+bc}}\)

\(=\frac{\sqrt{a}\cdot\sqrt{a}}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{\sqrt{b}\cdot\sqrt{b}}{\sqrt{\left(b+c\right)\left(a+b\right)}}+\frac{\sqrt{c}\cdot\sqrt{c}}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(=\frac{\sqrt{a}}{\sqrt{a+b}}\cdot\frac{\sqrt{a}}{\sqrt{c+a}}+\frac{\sqrt{b}}{\sqrt{b+c}}\cdot\frac{\sqrt{b}}{\sqrt{a+b}}+\frac{\sqrt{c}}{\sqrt{c+a}}\cdot\frac{\sqrt{c}}{\sqrt{c+b}}\)

\(\le\frac{\frac{a}{a+b}+\frac{a}{c+a}}{2}+\frac{\frac{b}{b+c}+\frac{b}{a+b}}{2}+\frac{\frac{c}{c+a}+\frac{c}{b+c}}{2}\)

\(=\frac{\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}}{2}=\frac{3}{2}\)

Vậy Max A = 3/2 khi a = b = c = 1. (Max not Min) 

3 tháng 2 2020

\(3-P=1-\frac{x}{x+1}+1-\frac{y}{y+1}+1-\frac{z}{z+1}\)

\(=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{9}{x+y+z+3}=\frac{9}{1+3}=\frac{9}{4}\)

\(\Rightarrow P\le\frac{3}{4}\)

Dấu "=" xảy ra tại \(x=y=z=\frac{1}{3}\)

4 tháng 2 2020

2/\(LHS\ge\frac{\left(a+b+c\right)^2}{a+b+c+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

\(\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{1+b+c}{3}+\frac{1+c+a}{3}+\frac{1+a+b}{3}}=\frac{3}{2}\)

18 tháng 12 2019

\(\frac{\Sigma_{cyc}a^3\left(b-c\right)}{\Sigma_{cyc}a^2\left(b-c\right)}=\frac{-\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}{-\left(a-b\right)\left(b-c\right)\left(c-a\right)}=a+b+c\ge3\sqrt[3]{abc}\)

18 tháng 12 2019

Phùng Minh Quân BĐT cuối: \(a+b+c\ge3\sqrt[3]{abc}\) xảy ra khi a = b = c thì cái mẫu thức: \(\Sigma_{cyc}a^2\left(b-c\right)=0\) vô lí!

30 tháng 8 2018

1. Ta có : \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)

          \(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{a+b}{a+b+c+d}\)

          \(\frac{c}{a+b+c+d}< \frac{c}{a+c+d}< \frac{b+c}{a+b+c+d}\)

         \(\frac{d}{a+b+c+d}< \frac{d}{a+b+d}< \frac{c+d}{a+b+c+d}\)

Cộng vế theo vế ta được :

\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)             ( đpcm )

2. Áp dụng bất đẳng thức Cô - si cho 2 số ko âm b-1 và 1 ta có :

\(\sqrt{\left(b-1\right)\cdot1}\le\frac{\left(b-1\right)+1}{2}=\frac{b}{2}\)

Dấu "=" xảy ra <=> b - 1 = 1    <=> b = 2

\(\Rightarrow a\sqrt{b-1}=a\sqrt{\left(b-1\right)\cdot1}\le a\cdot\frac{b}{2}=\frac{ab}{2}\)

Tương tự ta có : \(b\sqrt{a-1}\le\frac{ab}{2}\) Dấu "=" xảy ra <=> a = 2

Do đó : \(a\sqrt{b-1}+b\sqrt{a-1}\le\frac{ab}{2}+\frac{ab}{2}=ab\)

Dấu "=" xảy ra <=> a = b = 2