K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2015

Câu Hỏi Tương Tự của Trương Diệu Ngọc nha !

MERRY CHRISMAS !Đoàn Văn Nam

27 tháng 7 2020

Bài làm:

Ta có: \(ab.bc=\frac{3}{5}.\frac{4}{5}\Leftrightarrow ab^2c=\frac{12}{25}\)

\(\Rightarrow ab^2c\div ac=\frac{12}{25}\div\frac{3}{4}\)

\(\Rightarrow b^2=\frac{16}{25}\Leftrightarrow b=\pm\frac{4}{5}\)

Thay vào ta tính được a và b

b,c tương tự a

27 tháng 7 2020

a, \(ab.bc.ca=\frac{3}{4}.\frac{4}{5}.\frac{3}{4}\)

\(\left(a.b.c\right)^2=\left(\frac{3}{5}\right)^2\)

\(a.b.c=\frac{3}{5}\)

\(\Rightarrow b=\frac{4}{5};c=1;a=\frac{3}{4}\)

b, \(a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=-12+18+30\)

\(\Rightarrow\left(a+b+c\right).\left(a+b+c\right)=36\)

\(\Rightarrow\left(a+b+c\right)^2=36\)

\(\hept{\begin{cases}a+b+c=6\\a+b+c=-6\end{cases}}\)

Nếu a + b + c = 6 \(\Rightarrow\)a = - 2 b = 3 c=5

Nếu a + b + c = - 6 \(\Rightarrow\)a = 2 , b = -3 c = -5

c,ab=c => a=c/b (1) 

bc=4a => a=(bc)/4 (2) 

Từ (1) và (2) => c/b = (bc)/4 

<=> 1/b = b/4 <=> b^2 =4 <=> b = 2 hoặc b = -2 

(*) Với b=2 thì 

(1) => a=c/2 <=> c=2a:

ac=9b nên 2a^2 = 18 <=> a^2 = 9 <=> a=3 hoặc a=-3 

_ Với a=3 thì c= 2*3 = 6 (thỏa) 

_Với a=-3 thì c= 2*-3 =-6 (thỏa) 

(*) Với b=-2 thì 

(1) => a=c/-2 <=> c=-2a 

Ta có: ac=9b nên -2a^2 = -18 <=> a^2 = 9 <=> a=3 hoặc a=-3 

_ Với a=3 thì c= -2*3 = -6 (thỏa) 

_Với a=-3 thì c= -2*-3 =6 (thỏa) 

Vậy S= { (3;2;6) ; (-3;2;-6) ; (3;-2;-6) ; (-3;-2;6) } 

21 tháng 12 2017

Tớ ko bt

22 tháng 2 2019

Ta có:

0 ≤ a ≤ b ≤ c ≤ 1; và a, b, c ≥ 0

=> a - 1 ≤ 0 ; b - 1 ≤ 0

=> ( a - 1 )( b - 1 ) ≥ 0

=> ab - a - b + 1 ≥ 0

=> ab + 1 ≥ a + b

=>\(\frac{1}{ab+1}\le\frac{1}{a+b}\)    => \(\frac{c}{ab+1}\le\frac{c}{a+b}\)   (1)

Chứng Minh Tương Tự: =>     \(\frac{a}{bc+1}\le\frac{a}{a+b}\)    (2)

                                          và   \(\frac{b}{ac+1}\le\frac{b}{a+c}\)     (3)

Từ (1); (2) và (3)  =>

\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)\(\le\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)

=> \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\)( ĐPCM )

9 tháng 12 2018

\(\hept{\begin{cases}\frac{ab}{a+b}=\frac{bc}{b+c}\Rightarrow ab.\left(b+c\right)=\left(a+b\right).bc\Rightarrow abb+abc=abc+bbc\Rightarrow a=c\\\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow\left(c+a\right).bc=\left(b+c\right).ca\Rightarrow bcc+abc=abc+cca\Rightarrow a=b\end{cases}\Rightarrow a=b=c}\)

\(M=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

p/s: bài này có nhiều cách lắm, cách này ko đc thì thử làm cách khác =))

9 tháng 12 2018

\(\frac{ab}{a+b}=\frac{bc}{b+c}\Rightarrow ab\left(b+c\right)=\left(a+b\right)bc\)

\(\Rightarrow ab^2+abc=abc+b^2c\Rightarrow ab^2=b^2c\Rightarrow a=c\) (1)

\(\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow bc\left(c+a\right)=\left(b+c\right)ca\)

\(\Rightarrow bc^2+bca=bca+c^2a\Rightarrow bc^2=c^2a\Rightarrow b=a\)(2)

Từ (1) và (2) được a = b = c

Khi đó:

\(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)

6 tháng 1 2016

áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\frac{ab+bc}{a+b}=\frac{bc+ca}{b+c}=\frac{ca+ab}{c+a}=\frac{ab+bc+bc+ca+ca+ab}{a+b+b+c+c+a}=\frac{2\left(ab+bc+ca\right)}{2\left(a+b+c\right)}=\frac{ab+bc+ca}{a+b+c}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta lại có

\(\frac{ab+bc+ca}{a+b+c}=\frac{ab}{a}+\frac{bc}{b}+\frac{ca}{c}=\frac{ab}{a}=\frac{bc}{b}=\frac{ca}{a}\)

Từ \(\frac{ab}{a}=\frac{bc}{b}=\frac{ca}{c}\Rightarrow\frac{b}{1}=\frac{c}{1}=\frac{a}{1}\Rightarrow b=c=a\)

vậy a=b=c (đpcm)

6 tháng 1 2016

Kết quả hình ảnh cho hình động    Bao nhiêu **** cho hình này !!!!?????????????????/ Tick mạnh vô ae ơi 

2 tháng 3 2019

=3(a-b)(b-c)(c-a) nha bn