Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
Ta có: Có DH _l_ EF (gt)
=> H là hình chiếu của D
mà DE < DF (gt)
=> HE < HF (quan hệ đường xiên hình chiếu)
2. Vì HE < HF (từ 1)
=> ME < MF (quan hệ đx, hình chiếu)
3. Xét ΔDHEΔDHE và ΔDHFΔDHF có:
DH: chung
H1ˆ=H2ˆ=90o(gt)H1^=H2^=90o(gt)
nhưng HE < HF (từ 1)
=> HDEˆ<HDFˆHDE^<HDF^ (vì HDEˆHDE^ đối diện với HE; HDFˆHDF^ đối diện với HF)
Câu 1 : D
Câu 2 : D
Câu 3 : C
Câu 4 : Tam giác luôn là "tam giác đơn", "tam giác lồi" vì số đo các góc trong luôn nhỏ hơn 1800.
Câu 5 : Sai. Vì không có tam giác nào có trọng tâm nằm ngoài tam giác.
a,A+B+C=180 độ \(\Rightarrow C=30\)độ
\(\Rightarrow A>B>C\Rightarrow AB< AC< BC\)(t/c............)
b, t/gBAD=t/gBKD(c-g-c) suy ra DA=DK
c,BDC cân vì có DBC=DCB=30 độ
d, théo t/c của tam giác vuông (cạnh đối diện vs góc 30 độ =1/2 cạnh huyền)
a) So sánh ∠B và ∠C
Xét ΔABC ta có: AC > AB (8 > 6) ⇒ ∠C > ∠B (định lí)
b) Tính BC ?
Áp dụng định lí Pytago vào ΔABC vuông tại A
Ta có: BC2 = AB2 + AC2
= 62 + 82
= 36 + 64 = 100
⇒ BC = 10 (cm)
c) EA = EH
Xét hai tam giác vuông ABE và HBE có:
∠ABE = ∠HBE (BE là phân giác)
BE : cạnh chung
Do đó: ΔABE = ΔHBE (cạnh huyền - góc nhọn)
⇒ EA = EH (hai cạnh tương ứng)
Bài 1 trc
Hình bác tự vẽ đc nhỉ
a) +) Xét \(\Delta\)ABD và \(\Delta\)ABC có
AB : cạnh chung
\(\widehat{DAB}=\widehat{BAC}\left(=90^o\right)\)
AD = AC (gt)
=> \(\Delta\) ABD = \(\Delta\) ABC (c-g-c )
b) Theo câu a ta có \(\Delta\) ABD = \(\Delta\) ABC
=> BD = BC ( 2 góc tương ứng )
+) Xét \(\Delta\) BDC có
\(\hept{\begin{cases}BD=BC\left(cmt\right)\\\widehat{C}=60^o\end{cases}}\)
=> \(\Delta\) BDC đều
c) +) Xét \(\Delta\) ABC vuông tại A
\(\Rightarrow\widehat{C}+\widehat{ABC}=90^o\) ( tính chất tam giác vuông )
\(\Rightarrow\widehat{ABC}+60^o=90^o\)
\(\Rightarrow\widehat{ABC}=30^o\)
+) Xét \(\Delta\) ABC vuông tại A có \(\widehat{ABC}=30^o\)
=> \(AC=\frac{1}{2}BC\) ( tính chất trong 1 tam giác vuông có 1 góc bằng 30 độ thì cạnh góc vuông đối diện vs góc 30 độ bằng 1 nửa cạnh huyền )
\(\Rightarrow BC=2.AC\)
\(\Rightarrow BC=2.4=8\) ( cm)
+) Xét \(\Delta\)ABC vuông tại A
\(\Rightarrow BC^2=AC^2+AB^2\) ( định lí Py-ta-go)
\(\Rightarrow AB^2=BC^2-AC^2\)
Bạn tự làm nốt nhá
Cau kia đang bận k giúp đc r
D E F N 1 2 M
a,Tam giác DEN và tam giác DFN có:
DN chung
góc D1=góc D2
DE=DF
=> tam giác DEN=tam giác DFN (c.g.c)
b, Ta có: tam giác DEN=tam giác DFN (cma) => NE=NF
c, Vì DE=DF => tam giác DEF cân tại D, mà DM là tia phân giác
=> DM đồng thời là đường trung tuyến
=> ME=MF
d, Vì tam giác DEF cân tại D, mà DM là đường phân giác và là đường trung tuyến
=> DM đồng thời là đường cao
=> DM vuông góc với EF
e,Vì DM là đường trung tuyến, mà đồng thời là đường vuông góc
=> DM là đường trung trực
f,Đề bài câu f có chút nhầm lẫn bn ơi, phải là tam giác EMN=tam giác FMN
Cách 1: (c.c.c)
Tam giác EMN và tam giác FMN có:
MN chung
EM=MF
NE=NF
=> tam giác EMN=tam giác FMN (c.c.c)
Cách 2: (c.g.c)
Vì DM vuông góc với EF
=> NM -----------------------
=> góc NME = góc NMF =90 độ
Tam giác EMN và tam giác FMN có:
NM chung
góc NME= góc NMF (chứng minh trên)
EM=FM
=> tam giác EMN = tam giác FMN (c.g.c)
a) Xét ∆DEM và ∆DFN ta có
DE = DF (gt)
DM chung
EDM = FDM ( DM là phân giác )
=> ∆ DEM = ∆DFN (c.g.c)(dpcm)
b) Vì ∆DEM = ∆DFN(cmt)
=> EM = MF ( tương ứng)
c) Vì DE = DF (gt)
=>∆ DEF cân tại D
Mà DM là phân giác
=> M là trung điểm EF ( tính chất đường phân giác trong ∆ cân )
=> EM = MF(1)
d) Trong ∆ cân DEF có DM là phân giác và là trung tuyến
=> DM vuông góc với EF(2)
e) Từ (1) và (2)
=> DM là trung trực EF
f) Xét ∆NEM và ∆NFM ta có :
NE = NF
NM chung
EM = MF
=> ∆NEM = ∆NFM (c.c.c)
Xét ∆NEM và ∆NFM ta có :
NE = NF
NMF = NME (DM là trung trực)
EM = MF
=> ∆NEM = ∆NFM (c.g.c)
a) Do \(MF>ME\) nên \(\widehat{E}>\widehat{F}\) (Quan hệ giữa góc và cạnh đối diện trong tam giác)
b) Áp dụng định lý Pytago ta có:
\(EF^2=ME^2+MF^2=3^2+4^2=25\Rightarrow EF=5\left(cm\right)\)
Do \(MI\) là trung tuyến ứng với cạnh huyền nên \(MI=\dfrac{1}{2}EF=2,5\left(cm\right)\)
Do \(G\) là trọng tâm tam giác nên \(MG=\dfrac{2}{3}MI=\dfrac{2}{3}.2,5=\dfrac{5}{3}\left(cm\right)\)