Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) góc BDA+góc BDC=180độ(kề bù)
=> góc BDA=180độ-góc BDC
=180độ-105độ
=75độ
xét tam giác BAD vuông ở A
=> góc ABD+góc ADB=90độ
=> góc ABD=90độ-góc ADB
=90độ-75độ
=15độ
góc ABD+góc CBD=15độ+15độ=30độ(vì BD là p.giác của góc B)
xét tam giác ABC vuông ở A
=> góc B+góc C=90độ
=> góc C=90độ-30độ
=60độ
2) mh k chắc chắn lắm
xét tam giác BIC có góc IBC+góc BIC +góc ICB=180độ(tổng 3 góc trog 1 tam giác =180độ)
=> góc IBC+góc ICB=180độ-góc BIC
=180độ-130độ
=50độ
xét tam giác ABC có góc A+góc B+góc C=180độ(tổng 3 góc trog 1 tam giác =180độ)
=> góc A=180độ-(góc B+góc C)
=180độ-(2 góc IBC+2 góc ICB)
=180độ-\(\left[2.\left(gócIBC+gócICB\right)\right]\)
=180độ-\(\left[2.50^0\right]\)
=180độ-100độ
=80độ
\(\text{1: Cho \Delta ABC cân tại C, kết luận nào sau đây là đúng?}\)
a. AB=AC b. BA=BC c. CA=CB d. AC=BC
\(\text{2: Tam giác ABC vuông tại A, biết số đo góc C bằng 50^0. Tính số đo góc B}\)
\(\text{Xét tam giác ABC có:}\)
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) \(\text{ (tổng 3 góc trong một tam giác)}\)
\(\Leftrightarrow90^0+\widehat{B}+50^0=180^0\) \(\widehat{A}=90^0\)\(\text{vì A vuông theo gt}\)
\(\Leftrightarrow\widehat{B}=40^0\)
\(\text{3: Tam giác MNP cân tại P. Biết góc N có số đo = 40^0. Tính số đo góc P}\)
\(\text{3: Tam giác MNP cân tại P}\)
\(\Rightarrow\widehat{M}=\widehat{N}=40^0\)
\(\Rightarrow\widehat{P}=100^0\) \(do\widehat{M}+\widehat{N}+\widehat{P}=180^0\)\(\text{ (tổng 3 góc trong một tam giác)}\)
\(\text{4: Cho tam giác ABC vuông tại A , biết AB = 3cm; biết AC= 4cm. Tính độ dài cạnh BC }\)
\(\text{Theo Pitago cho 1 tam giác vuông, ta có:}\)
\(BC^2=AB^2+AC^2=3^2+4^2=9+16+25\)
\(\Rightarrow BC=5\)
1. c)
2. Tam giác ABC vuông tại A
=> ^B + ^C = 900 ( hai góc nhọn phụ nhau )
^B + 500 = 900
=> ^B = 400
3. Tam giác MNP cân tại P => ^M = ^N ( hai góc ở đáy )
mà ^N = 400 => ^M = ^N = 400
Ta có : ^M + ^N + ^P = 1800 ( tổng 3 góc 1 tam giác )
400 + 400 + ^P = 1800
=> ^P = 1000
4. Áp dụng định lí Pytago cho tam giác vuông ABC ta có :
BC2 = AB2 + AC2
=> \(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
C