K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2020

Bài 1:

a) (5x-4)(4x+6)=0

\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)

b) (x-5)(3-2x)(3x+4)=0

<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0

<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)

c) (2x+1)(x2+2)=0

=> 2x+1=0 (vì x2+2>0)

=> x=\(\frac{-1}{2}\)

30 tháng 4 2020

bài 1: 

a) (5x - 4)(4x + 6) = 0

<=> 5x - 4 = 0 hoặc 4x + 6 = 0

<=> 5x = 0 + 4 hoặc 4x = 0 - 6

<=> 5x = 4 hoặc 4x = -6

<=> x = 4/5 hoặc x = -6/4 = -3/2

b) (x - 5)(3 - 2x)(3x + 4) = 0

<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0

<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4

<=> x = 5 hoặc -2x = -3 hoặc 3x = -4

<=> x = 5 hoặc x = 3/2 hoặc x = 4/3

c) (2x + 1)(x^2 + 2) = 0

vì x^2 + 2 > 0 nên:

<=> 2x + 1 = 0

<=> 2x = 0 - 1

<=> 2x = -1

<=> x = -1/2

bài 2: 

a) (2x + 7)^2 = 9(x + 2)^2

<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36

<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0

<=> -5x^2 - 8x + 13 = 0

<=> (-5x - 13)(x - 1) = 0

<=> 5x + 13 = 0 hoặc x - 1 = 0

<=> 5x = 0 - 13 hoặc x = 0 + 1

<=> 5x = -13 hoặc x = 1

<=> x = -13/5 hoặc x = 1

b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)

<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20

<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0

<=> -5x^3 - 2x^2 + 17x - 14 = 0

<=> (-x + 1)(x + 2)(5x - 7) = 0

<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0

<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7

<=> x = 1 hoặc x = -2 hoặc 5x = 7

<=> x = 1 hoặc x = -2 hoặc x = 7/5

Câu 1: Phương trình nào sau đây là phương trình bậc nhất một ẩn?A/ 0x + 2 = 2 B/ 5x + 2y = 0 C/ 2x/3 + 1 = 0 D/2/3x + 4=0Câu 2: Phương trình x = 1 tương đương với phương trình nào sau đây?A/ x2 = 1 B/ x(x – 1) = 0 C/ x2 + x – 2 = 0 D/ 2x – 1= xCâu 3: Tập nghiệm phương trình x – 3 = 0 được viết như thế nào?A. S = {0} B. S ={3} C. S = {3; 0} D. S = {–3}Câu 4. Điều kiện xác định của phương trình x/x-3 - (x-1)/x=1: là...
Đọc tiếp

Câu 1: Phương trình nào sau đây là phương trình bậc nhất một ẩn?

A/ 0x + 2 = 2 B/ 5x + 2y = 0 C/ 2x/3 + 1 = 0 D/2/3x + 4=0

Câu 2: Phương trình x = 1 tương đương với phương trình nào sau đây?

A/ x2 = 1 B/ x(x – 1) = 0 C/ x2 + x – 2 = 0 D/ 2x – 1= x

Câu 3: Tập nghiệm phương trình x – 3 = 0 được viết như thế nào?

A. S = {0} B. S ={3} C. S = {3; 0} D. S = {–3}

Câu 4. Điều kiện xác định của phương trình x/x-3 - (x-1)/x=1: là kết luận nào sau đây?

A. x≠0 B. x≠3 C. x≠0; x≠3 D. x≠0; x≠–3

Câu 5. Tập nghiệm S = { 1,2} là của phương trình nào sau đây?

A. 5x – 6 = 0 B. 6x – 5 = 0 C. (x – 1)(x – 2) = 0 D. 1x = 2

Câu 6: Số nào sau đây nghiệm đúng phương trình 1= 2x + 3 ?

A/ x = 1 B/ x = –1 C/ x = –2 D/ x = 0
 

Hình 1 Hình 2 Hình 3

Câu 7. Hình 1, biết AD là tia phân giác của . Tỷ số x: y bằng tỉ số nào sau đây?

A. 5 : 2 B. 5 : 4 C. 2 : 5 D. 4 : 5

Câu 8. Hình 2, ký hiệu cặp tam giác nào sau đây đồng dạng với nhau là đúng?

a. ∆ABC∼ ∆ACB b. ∆ABC∼ ∆MPN c. ∆ABC∼ ∆MNP d. Cả a, b, c đều đúng.

Câu 9: Hình 3, nếu EF // BC, tỉ lệ thức nào đúng theo định lí Ta - lét?

A/AE/EB = CF/CA B/EA/EB = AF/FC C/AE/EB = AF/AC D/AE/AB = AC/AF

Câu 10: Hình 3, nếu EF // BC, theo hệ quả của định lí Ta-lét ta có tỉ lệ thức nào?

A/AE/BA=AF/AC=EF/BC .B/AE/AB=AF/AC .C/AE/AB=AF/FC=EF/BC .D/AE/EB=AF/FC

Câu 11: Hình 3, tỉ lệ thức nào sau đây đúng sẽ cho ta kết luận EF// BC?

A/AE/AB=EF/BC .B/AE/BE=AF/FC .C/AE/EB=AF/AC .D/FE/CB=AF/FC

Câu 12: Hình 3, nếu EF // BC, ta có cặp tam giác nào đồng dạng sau đây là đúng?

a. ∆ABC∼ ∆AFE b. ∆ABC∼ ∆EAF c. ∆BAC∼ ∆EAF d. Cả a, b, c đều đúng.

Câu 13. DABC ∼DDEF biết góc A = 500 , góc E= 700, AB = 4cm, ta kết luận được gì sau đây?

A. góc B = 700 B. góc B = 500 C. BC = 4cm D. BC = 4cm

Câu 14. Diện tích một hình chữ nhật thay đổi thế nào nếu tăng chiều rộng lên gấp đôi và giảm chiều dài đi ba lần?

A. Tăng 2 lần B. Giảm 1,5 lần C. Tăng 1,5 lần D. Giảm 1,5 lần

Câu 15. Cạnh hình thoi dài 5cm, một đường chéo dài 6cm thì có diện tích bao nhiêu?

A. S = 36cm2 B. S = 30cm2 C. S = 25cm2 D. S = 24cm
note*:∼ là đồng dạng 

các cậu giúp mình với mai mình nộp bài r

1
12 tháng 3 2022

rối qué với cả vì hum bt

26 tháng 3 2022

A

Chọn A

10 tháng 2 2020

a) \(3x^2+12x-66=0\)

Ta có \(\Delta=12^2+4.3.66=936,\sqrt{\Delta}=6\sqrt{26}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-12+6\sqrt{26}}{6}=-2+\sqrt{26}\\x=\frac{-12-6\sqrt{26}}{6}=-2-\sqrt{26}\end{cases}}\)

b) \(9x^2-30x+225=0\)

Ta có \(\Delta=33^2-4.9.225=-7011\)

\(\Delta< 0\)nên pt vô nghiệm

c) \(x^2+3x-10=0\)

Ta có \(\Delta=3^2+4.10=49,\sqrt{\Delta}=7\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-3+7}{2}=2\\x=\frac{-3-7}{2}=-5\end{cases}}\)

d) \(3x^2-7x+1=0\)

Ta có \(\Delta=7^2-4.3.1=37,\sqrt{\Delta}=\sqrt{37}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{7+\sqrt{37}}{6}\\x=\frac{7-\sqrt{37}}{6}\end{cases}}\)

3x2 + 2x - 1 = 0

<=> 3x2 + 3x - x - 1 = 0

<=> 3x ( x + 1 ) - ( x + 1 ) = 0

<=> ( x + 1 ) ( 3x -1 ) = 0 

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\3x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}}\)

KL : Tập nghiệp ...........................

9 tháng 2 2020

\(3x^2+2x-1=0\)

Ta có \(\Delta=2^2+4.3.1=16,\sqrt{\Delta}=4\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-2+4}{6}=\frac{1}{3}\\x=\frac{-2-4}{6}=-1\end{cases}}\)

30 tháng 4 2020

bài 1: 

a) ĐKXĐ: x khác 0; x khác -1

 \(\frac{x-1}{x}+\frac{1-2x}{x^2+x}=\frac{1}{x+1}\)

<=> \(\frac{x-1}{x}+\frac{1-2x}{x\left(x+1\right)}=\frac{1}{x+1}\)

<=> (x - 1)(x + 1) + 1 - 2x = x

<=> x^2 - 2x = x

<=> x^2 - 2x - x = 0

<=> x^2 - 3x = 0

<=> x(x - 3) = 0

<=> x = 0 hoặc x - 3 = 0

<=> x = 0 hoặc x = 0 + 3

<=> x = 0 (ktm) hoặc x = 3 (tm)

=> x = 3

b) ĐKXĐ: x khác +-3; x khác -7/2

\(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)

<=> \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x-3\right)\left(x+3\right)}\)

<=> 13(x + 3) + (x - 3)(x + 3) = 6(2x + 7)

<=> 13x + 30 + x^2 = 12x + 42

<=> 13x + 30 + x^2 - 12x - 42 = 0

<=> x - 12 + x^2 = 0

<=> (x - 3)(x + 4) = 0

<=> x - 3 = 0 hoặc x + 4 = 0

<=> x = 0 + 3 hoặc x = 0 - 4

<=> x = 3 (ktm) hoặc x = -4 (tm)

=> x = -4

c) ĐKXĐ: x khác +-1

\(\frac{x}{x-1}-\frac{2x}{\left(x-1\right)\left(x+1\right)}=0\)

<=> x(x + 1) - 2x = 0

<=> x^2 + x - 2x = 0

<=> x^2 - x = 0

<=> x(x - 1) = 0

<=> x = 0 hoặc x - 1 = 0

<=> x = 0 hoặc x = 0 + 1

<=> x = 0 (tm) hoặc x = 1 (ktm)

=> x = 0

d) \(\frac{x^2+2x}{x^2+1}-2x=0\)

<=> \(\frac{x\left(x+2\right)}{x^2+1}-2x=0\)

<=> x(x + 2) - 2x(x^2 + 1) = 0

<=> x^2 - 2x^3 = 0

<=> x^2(1 - 2x) = 0

<=> x^2 = 0 hoặc 1 - 2x = 0

<=> x = 0 hoặc -2x = 0 - 1

<=> x = 0 hoặc -2x = -1

<=> x = 0 hoặc x = 1/2

30 tháng 4 2020

bài 2: 

(x - 1)(x^2 + 3x - 2) - (x^3 - 1) = 0

<=> x^3 + 3x^2 - 2x - x^2 - 3x + 2 - x^2 + 1 = 0

<=> 2x^2 - 2x - 3x + 3 = 0

<=> 2x(x - 1) - 3(x - 1) = 0

<=> (2x - 3)(x - 1) = 0

<=> 2x - 3 = 0 hoặc x - 1 = 0

<=> 2x = 0 + 3 hoặc x = 0 + 1

<=> 2x = 3 hoặc x = 1

<=> x = 3/2 hoặc x = 1

bài 3:

(x^3 + x^2) + (x^2 + x) = 0

<=> x^3 + x^2 + x^2 + x = 0

<=> x^3 + 2x^2 + x = 0

<=> x(x^2 + 2x + 1) = 0

<=> x(x + 1)^2 = 0

<=> x = 0 hoặc x + 1 = 0

<=> x = 0 hoặc x = 0 - 1

<=> x = 0 hoặc x = -1

12 tháng 2 2016

a)x2+(x-3)(3x-5)=9

<=>x2+3x2-5x-9x+15=9

,<=>4x2-14x+15=9

<=>4x2-14x+6=0

<=>4x2-12x-2x+6=0

<=>4x(x-3)-2(x-3)=0

<=>(x-3)(4x-2)=0

                 =>  x-3=0 hoặc 4x-2=0 =>x=3 hoặc x=1/2

b)(3x+2)2=(x-4)2

<=>(3x+2)2-(x-4)2=0

<=>(3x+2-x+4)(3x+2+x-4)=0                     (HẰNG ĐẲNG THỨC SỐ 3)

<=>(2x+6)(4x-2)=0

           =>2x+6=0 hoặc 4x-2 => x=-3 hoặc x=1/2

c)Chưa ra thông cảm ahihi

13 tháng 2 2016

c,                        x4+2x3-2x2+2x-3 = 0
<=> (x4-x3)+(3x3-3x2)+(x2-x)+(3x-3) = 0
<=> x3(x-1)+3x2(x-1)+x(x-1)+3(x-1)  = 0
<=>                   (x-1)(x3+3x2+x+3) = 0
<=>                 (x-1)[x2(x+3)+(x+3)] = 0
<=>                       (x-1)(x+3)(x2+1) = 0
<=>                                        x-1  =0  hoặc x+3=0   ( vì x2+1 khác 0 )
<=>                                            x =1 hoặc      x= -3

29 tháng 1 2020

Câu d : \({2x \over x+1}\) + \({18\over x^2+2x-3}\) = \({2x-5 \over x+3}\)

29 tháng 1 2020

a) \(x^4+2x^3-3x^2-8x-4=0\)

\(\Leftrightarrow x^4+2x^3-3x^2-6x-2x-4=0\)

\(\Leftrightarrow x^3\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-3x-2=0\right)\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-4x+x-2=0\right)\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(x^2-4\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(x-2\right)\left(x+2\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x+1\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=-1\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\pm2;-1\right\}\)

b) \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=0\)

\(\Leftrightarrow x-2=0\)hoặc \(x+2=0\)hoặc \(x^2-10=0\)

\(\Leftrightarrow x=2\)hoặc \(x=-2\)hoặc \(x=\pm\sqrt{10}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{\pm2;\pm\sqrt{10}\right\}\)

c) \(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)

\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x^2+5x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\left(tm\right)\\2\left(x+\frac{5}{4}\right)^2+\frac{7}{16}=0\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)

d) Xem lại đề