Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Do A và B lần lượt nằm trên trục Ox, Oy nên tọa độ của chứng có dạng :
A( xA ; 0) và B ( 0 ; yB)
Ta có M là trung điểm của AB nên :
Suy ra phương trình đường thẳng AB là :
Hay 3x- 5y- 30 =0
A(0;y); B(x;0)
Theo đề, ta có: 0+x=10 và y+0=-6
=>x=10 và y=-6
=>A(0;-6); B(10;0)
Gọi (d): y=ax+b là phương trình cần tìm
Theo đề, ta có:
0a+b=-6 và 10a+b=0
=>b=-6 và a=3/5
do A và B lần lượt nằm trên trục Ox ; Oy nên tọa độ của chúng có dạng :
A( XA ; 0 ) và B( 0 ; YB )
\(\left\{{}\begin{matrix}x_A+x_B=2x_M\\y_A+y_B=2y_M\end{matrix}\right.\) \(\rightarrow\) \(\left\{{}\begin{matrix}y_A=10\\y_B=-6\end{matrix}\right.\)
suy ra phương trình đường thẳng AB là :
\(\dfrac{x}{10}+\dfrac{y}{-6}=1\)
hay \(3x-5y-30=0\)
Giả sử A là giao của d với Ox và B là giao của d với Oy
\(\Rightarrow A\left(a;0\right)\) và \(B\left(0;b\right)\)
Do I là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}x_I=\dfrac{a+0}{2}\\y_I=\dfrac{b+0}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}A\left(4;0\right)\\B\left(0;-2\right)\end{matrix}\right.\)
Phương trình d theo đoạn chắn:
\(\dfrac{x}{4}+\dfrac{y}{-2}=1\Leftrightarrow x-2y-4=0\)
Đáp án A
Gọi điểm A(a; 0) và B( 0; b)
+ Phương trình đoạn chắn (AB):
+Do tam giác OAB vuông cân tại O nên a = b do đó a= b hoặc a= -b.
+ TH1:b= a
Khi đó (*) trở thành: x a + y a = 1 hay x+ y= a
Mà M( 2; -3) thuộc AB nên 2-3= a hay a= -1; b= -1
Khi đó phương trình đường thẳng AB là: x+ y+ 1 = 0 .
+ TH2: b= -a
Khi đó (*) trở thành: x a - y a = 1 hay x- y= a
Mà M( 2; -3) thuộc AB nên 2+ 3= a hay a= 5; b= -5
Khi đó phương trình đường thẳng AB là: x- y- 5= 0
Phương trình đường thẳng qua M có dạng:
\(a\left(x-5\right)+b\left(y+3\right)=0\) (a;b khác 0)
\(\Leftrightarrow ax+by-5a+3b=0\)
Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x=0\\by-5a+3b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=\frac{5a}{b}-3\end{matrix}\right.\)
Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}ax-5a+3b=0\\y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\frac{3b}{a}+5\\y=0\end{matrix}\right.\)
Do M là trung điểm AB:
\(\Rightarrow\left\{{}\begin{matrix}-\frac{3b}{a}+5=10\\\frac{5a}{b}-3=-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{b}{a}=-\frac{5}{3}\\\frac{a}{b}=-\frac{3}{5}\end{matrix}\right.\)
Chọn \(a=3\Rightarrow b=-5\)
Phương trình d: \(3x-5y-30=0\)
a: Vì (d) đi qua A(3;-4) và (0;2) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}3a+b=-4\\b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=2\end{matrix}\right.\)
b: vì (d)//y=-4x+4 nên a=-4
Vậy:(d): y=-4x+b
Thay x=-2 và y=0 vào (d), ta được:
b+8=0
hay b=-8