K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2017
ở trong sách nào đó bạn

Bài 1

a, x2 + 4x + 3

24 tháng 8 2019

a) \(x^2+4x+3\)

\(=x^2+3x+x+3\)

\(=x\left(x+3\right)+\left(x+3\right)\)

\(=\left(x+1\right)\left(x+3\right)\)

6) c) x3 - x2 + x = 1

<=> x3 - x2 + x - 1 = 0

<=> (x3 - x2) + (x - 1) = 0

<=> x2 (x - 1) + (x - 1) = 0

<=> (x - 1) (x2 + 1) = 0

=> x - 1 = 0 hoặc x2 + 1 = 0

* x - 1 = 0 => x = 1

* x2 + 1 = 0 => x2 = -1 => x = -1

Vậy x = 1 hoặc x = -1

15 tháng 11 2019

Bài 5: 

a) Đặt   \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=3^{32}-1\)

\(\Rightarrow A=\frac{3^{32}-1}{8}\)

b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)

=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)

\(=\left(7x+6-5+6x\right)^2\)

\(=\left(13x+1\right)^2\)

2.Tim x

a,(2x+1)2-4(x+2)2=9

<=> (4x2+4x+1)-4(x2+4x+4)=9

<=> -12x-15=9

<=> -12x=24

<=> x=-2

19 tháng 6 2019

\(1a,\)\(\left(x^2-0,1\right)=\left(x-\sqrt{0,1}\right)\left(x+\sqrt{0,1}\right)\)

\(1b,\)\(\left(2a^2+b^2\right)^2=\left(2a^2\right)^2+2.2a^2.b^2+\left(b^2\right)^2=4a^4+4a^2b^2+b^4\)

\(1c,\)\(\left(a^2+5\right)\left(5-a^2\right)=\left(5+a^2\right)\left(5-a^2\right)=25-x^4\)

6 tháng 9 2020

1. (x + 2)(x2 - 2x + 4) - (x3 + 2x2) = 5

=> x(x2 - 2x + 4) + 2(x2 - 2x + 4) - x3 - 2x2 - 5 = 0

=> x3 - 2x2 + 4x + 2x2 - 4x + 8 - x3 - 2x2 - 5 = 0

=> (x3 - x3) + (-2x2 + 2x2 - 2x2) + (4x - 4x) + (8 - 5) = 0

=> -2x2 + 3 = 0

=> -2x2 = -3

=> x2 = 3/2

=> x = \(\pm\sqrt{\frac{3}{2}}\)

2. \(\left(x+5\right)^2-6=0\)

=> x2 + 10x + 25 - 6 = 0

=> x2 + 10x + 19 = 0

=> x vô nghiệm(do mình không để căn nên ghi vô nghiệm thôi nhá)

3. \(\left(x+3\right)\left(x^2-3x+9\right)-x^3=2x\)

=> x(x2 - 3x + 9) + 3(x2 - 3x + 9) - x3 - 2x = 0

=> x3 - 3x2 + 9x + 3x2 - 9x + 27 - x3 - 2x = 0

=> (x3 - x3) + (-3x2 + 3x2) + (9x - 9x - 2x) + 27 = 0

=> -2x + 27 = 0

=> -2x = -27

=> x = 27/2

4. \(\left(x-2\right)^3-x^3+6x^2=7\)

=> x3 - 6x + 12x - 8 - x3 + 6x2 = 7

=> (x3 - x3) + (-6x2 + 6x2) + 12x - 8 = 7

=> 12x - 8 = 7

=> 12x = 15

=> x = 5/4

5. \(3\left(x-2\right)^2+9\left(x-1\right)-3\left(x^2+x-3\right)=12\)

=> 3x2 - 12x + 12 + 9x - 9 - 3x2 - 3x + 9 = 12

=> (3x2 - 3x2) + (-12x + 9x - 3x) + (12 - 9 + 9) = 12

=> -6x + 12 = 12

=> -6x = 0

=> x = 0

6. \(\left(4x+3\right)^2-\left(4x-3\right)^2-5x-2=0\)

=> 48x - 5x - 2 = 0

=> 43x - 2 = 0

=> 43x = 2

=> x = 2/43

Còn bài cuối tự làm :>

6 tháng 9 2020

Anh Sang làm cầu kì quá ;-;

1. ( x + 2 )( x2 - 2x + 4 ) - ( x3 + 2x2 ) = 5

<=> x3 + 8 - x3 - 2x2 = 5

<=> 8 - 2x2 = 5

<=> 2x2 = 3

<=> x2 = 3/2

<=> \(x^2=\left(\pm\sqrt{\frac{3}{2}}\right)^2\)

<=> \(x=\pm\sqrt{\frac{3}{2}}\)

2. ( x + 5 )2 - 6 = 0

<=> ( x + 5 )2 - ( √6 )2 = 0

<=> ( x + 5 - √6 )( x + 5 + √6 ) = 0

<=> \(\orbr{\begin{cases}x+5-\sqrt{6}=0\\x+5+\sqrt{6}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{6}-5\\x=-\sqrt{6}-5\end{cases}}\)

3. ( x + 3 )( x2 - 3x + 9 ) - x3 = 2x

<=> x3 + 27 - x3 = 2x

<=> 27 = 2x

<=> x = 27/2

4. ( x - 2 )3 - x3 + 6x2 = 7

<=> x3 - 6x2 + 12x - 8 - x3 + 6x2 = 7

<=> 12x - 8 = 7

<=> 12x = 15

<=> x = 15/12 = 5/4

5. 3( x - 2 )2 + 9( x - 1 ) - 3( x2 + x - 3 ) = 12

<=> 3( x2 - 4x + 4 ) + 9x - 9 - 3x2 - 3x + 9 = 12

<=> 3x2 - 12x + 12 + 6x - 3x2 = 12

<=> -6x + 12 = 12

<=> -6x = 0

<=> x = 0

6. ( 4x + 3 )2 - ( 4x - 3 )2 - 5x - 2 = 0

<=> 16x2 + 24x + 9 - ( 16x2 - 24x + 9 ) - 5x - 2 = 0

<=> 16x2 + 24x + 9 - 16x2 + 24x - 9 - 5x - 2 = 0

<=> 43x - 2 = 0

<=> 43x = 2

<=> x = 2/43

7, ( 4x + 7 )( 2 - 3x ) - ( 6x + 2 )( 5 - 2x ) = 0

<=> -12x2 - 13x + 14 - ( -12x2 + 26x + 10 ) = 0

<=> -12x2 - 13x + 14 + 12x2 - 26x - 10 = 0

<=> -39x + 4 = 0

<=> -39x = -4

<=> x = 4/39

6 tháng 7 2018

MỌI NGƯỜI TRẢ LỜI GIÚP MÌNH VỚI MÌNH CẦN GẤP LẮP

5 tháng 9 2020

a) 2( x - 1 )2 + ( x + 3 )2 = 3( x - 2 )( x + 1 )

<=> 2( x2 - 2x + 1 ) + x2 + 6x + 9 = 3( x2 - x - 2 )

<=> 2x2 - 4x + 2 + x2 + 6x + 9 = 3x2 - 3x - 6

<=> 2x2 - 4x + x2 + 6x - 3x2 + 3x = -6 - 2 - 9

<=> 5x = -17

<=> x = -17/5

b) ( x - 1 )2 - 2( x - 3 ) = ( x + 1 )2

<=> x2 - 2x + 1 - 2x + 6 = x2 + 2x + 1

<=> x2 - 2x - 2x - x2 - 2x = 1 - 1 - 6

<=> -6x = -6

<=> x = 1 

c) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 6( x + 1 )2 + 3x2 = -33

<=> x3 - 9x2 + 27x - 27 - ( x3 - 33 ) + 6( x2 + 2x + 1 ) + 3x2 = -33

<=> x3 - 9x2 + 27x - 27 - x3 + 27 + 6x2 + 12x + 6 + 3x2 = -33

<=> x3 - 9x2 + 27x - x3 + 6x2 + 12x + 3x2 = -33 - 27 + 27 - 6

<=> 39x = -39

<=> x = -1

5 tháng 9 2020

a) Đặt \(a=x-1\)\(\Rightarrow\)\(\hept{\begin{cases}x+3=a+4\\x-2=a-1\\x+1=a+2\end{cases}}\)

    Ta có: \(2a^2+\left(a+4\right)^2=3.\left(a-1\right)\left(a+2\right)\)

        \(\Leftrightarrow2a^2+a^2+4a+4=3.\left(a^2+a-2\right)\)

        \(\Leftrightarrow3a^2+4a+4=3a^2+3a-6\)

        \(\Leftrightarrow a=-10\)

         \(\Rightarrow x-1=-10\)

        \(\Leftrightarrow x=-9\)

Vậy \(S=\left\{-9\right\}\)

b)  Đặt \(b=x-1\)\(\Rightarrow\)\(\hept{\begin{cases}x-3=b-2\\x+1=b+2\end{cases}}\)

     Ta có: \(b^2-2.\left(b-2\right)=\left(b+2\right)^2\)

         \(\Leftrightarrow b^2-2b+4=b^2+4b+4\)

         \(\Leftrightarrow-6b=0\) 

         \(\Leftrightarrow b=0\)

          \(\Rightarrow x-1=0\)

         \(\Leftrightarrow x=1\)

Vậy \(S=\left\{1\right\}\)

c) Ta có: \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2+3x^2=-33\)

        \(\Leftrightarrow\left(x-3\right)^3-\left(x-3\right)^3+6\left(x^2+2x+1\right)+3x^2+33=0\)

        \(\Leftrightarrow6x^2+12x+6+3x^2+33=0\)

       \(\Leftrightarrow9x^2+12x+39=0\)

       \(\Leftrightarrow\left(9x^2+12x+4\right)+35=0\)

       \(\Leftrightarrow\left(3x+2\right)^2+35=0\)

   Vì \(\left(3x+2\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(3x+2\right)^2+35\ge35>0\forall x\)

         mà \(\left(3x+2\right)^2+35=0\)

   \(\Rightarrow\)\(\left(3x+2\right)^2+35=0\)vô nghiệm

Vậy \(S=\varnothing\)

7 tháng 8 2020

Bài 3 : Ta có : \(A=\frac{2}{5}xy\left(x^2y-5x+10y\right)\)

\(A=\frac{2}{5}xy\cdot x^2y+\frac{2}{5}xy\left(-5x\right)+\frac{2}{5}xy\cdot10y\)

\(A=\frac{2}{5}x^3y^2-2x^2y+4xy^2\)

Chọn C

Bài 4 : \(\left(x-2\right)\left(x+5\right)=x\left(x+5\right)-2\left(x+5\right)\)

\(=x^2+5x-2x-10\)

\(=x^2+3x-10\)

Chọn B

Bài 3 : 

Ta có: A = 2/5xy( x2y -5x + 10y ) 

= 2/5xy.x2y - 2/5xy.5x + 2/5xy.10y

= 2/5x3y- 2x2y + 4xy2.

Chọn đáp án C

Bài 4 :

Ta có ( x - 2 )( x + 5 ) 

= x( x + 5 ) - 2( x + 5 )

= x2 + 5x - 2x - 10 = x2 + 3x - 10.

Chọn đáp án B.

Hok tốt