Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\sqrt{13,5}}{\sqrt{4,5}}=\sqrt{\frac{13,5}{4,5}}=\sqrt{3}\)
\(\sqrt{85}.\sqrt{125}.\sqrt{68}=\sqrt{85.125.68}=\sqrt{5.17.5.25.17.4}\)
\(=\sqrt{5^2.25.17^2.4}=\sqrt{5^2}.\sqrt{25}.\sqrt{17^2}.\sqrt{4}=5.5.17.2=850\)
\(a\)
\(\sqrt{2,7}\)\(.\)\(\sqrt{1,2}\)
\(=\)\(\sqrt{2,7.1,2}\)
\(=\)\(\sqrt{3,24}\)
\(=\)\(1,8\)
\(b\)
\(\sqrt{85}.\sqrt{125}.\sqrt{68}\)
\(=\)\(\sqrt{85.125.68}\)
\(=\)\(\sqrt{722500}\)
\(=\)\(850\)
học tốt!!!
Giả sử \(8< \sqrt{15}+\sqrt{17}\)
\(\Leftrightarrow64< 15+2\sqrt{15.17}+17\)(Bình phương hai vế)
\(\Leftrightarrow32< 2\sqrt{15.17}\)
\(\Leftrightarrow16< \sqrt{15.17}\)
\(\Leftrightarrow16< \sqrt{\left(16-1\right)\left(16+1\right)}\)
\(\Leftrightarrow\sqrt{16^2}< \sqrt{16^2-1}\)
\(\Leftrightarrow16^2< 16^2-1\)(vô lí)
Chứng minh tương tự điều giả sử \(8=\sqrt{15}+\sqrt{17}\)
Vậy \(8>\sqrt{15}+\sqrt{17}\)
https://olm.vn/hoi-dap/detail/61596070678.html
bn coppy link này nhé, có bài mak bn đang cần đấy
Ta có: \(\sqrt{2,7}\cdot\sqrt{1,2}\)
\(=\sqrt{2,7\cdot1,2}\)
\(=\sqrt{\frac{27}{10}\cdot\frac{6}{5}}\)
\(=\sqrt{\frac{81}{25}}=\sqrt{\left(\frac{9}{5}\right)^2}=\frac{9}{5}\)
\(\sqrt{2,7}\cdot\sqrt{1,2}\)
\(=\sqrt{2,7\cdot1,2}\)
\(=\sqrt{\frac{27}{10}\cdot\frac{6}{5}}\)
\(=\sqrt{\frac{27}{5}\cdot\frac{3}{5}}\)
\(=\sqrt{\frac{81}{25}}\)
\(=\sqrt{\left(\frac{9}{5}\right)^2}\)
\(=\left|\frac{9}{5}\right|=\frac{9}{5}\)
Bạn ấy sai thì bạn nhắc nhẹ thôi chứ làm gì phải ồ zê như vậy
2k4 phải ko ??
?
I don't know what are you say