Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(f\left(1\right)=\frac{3}{5}.1-2=-\frac{7}{5}\)
\(f\left(-\frac{1}{2}\right)=\frac{3}{5}.\left(-\frac{1}{2}\right)-2=-\frac{3}{10}-2=-\frac{23}{10}\)
b) \(f\left(x\right)=2\Leftrightarrow\frac{3}{5}x-2=2\Leftrightarrow x=\frac{20}{3}\)
c) \(y=-\frac{2}{5}x-3\) là hàm số nghịch biến trên R vì \(a=-\frac{2}{5}< 0\)
Bài 2 : Sao không có tọa độ điểm C nhỉ ?
\(ĐK:x\ge1\)
Pt (1) <=> \(y^2-y\sqrt{x-1}-y+\sqrt{x-1}=0\)
<=> \(\left(y^2-y\right)-\left(y\sqrt{x-1}-\sqrt{x-1}=0\right)\)
<=> \(y\left(y-1\right)-\sqrt{x-1}\left(y-1\right)=0\)
<=> \(\left(y-1\right)\left(y-\sqrt{x-1}\right)=0\Leftrightarrow\orbr{\begin{cases}y-1=0\\y-\sqrt{x-1}=0\end{cases}}\)
+) Với y-1=0 <=> y=1
Thế vào phương trình thứ (2) ta có: \(x^2+1-\sqrt{7x^2-3}=0\Leftrightarrow7x^2+7-7\sqrt{7x^2-3}=0\)
Đặt \(\sqrt{7x^2-3}=t\left(t\ge0\right)\)
Ta có phương trình ẩn t:
\(t^2-7t+10=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=5\end{cases}}\)
Với t =2 ta có: \(\sqrt{7x^2-3}=2\Leftrightarrow7x^2-3=4\Leftrightarrow x^2=1\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=-1\left(l\right)\end{cases}}\)
Với t=5 ta có: \(\sqrt{7x^2-3}=5\Leftrightarrow7x^2-3=25\Leftrightarrow x^2=4\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-2\left(l\right)\end{cases}}\)
Vậy hệ có 2nghiem (x,y) là (2,1) và (1, 1)
+) Với \(y-\sqrt{x-1}=0\Leftrightarrow y=\sqrt{x-1}\)
Thế vào phương trình (2) ta có:
\(x^2+\sqrt{x-1}-\sqrt{7x^2-3}=0\Leftrightarrow\left(\sqrt{x-1}-1\right)+\left(x^2+1-\sqrt{7x^2-3}\right)=0\)
<=> \(\frac{\left(x-1\right)-1}{\sqrt{x-1}+1}+\frac{x^4+2x^2+1-7x^2+3}{x^2+1+\sqrt{7x^2-3}}=0\Leftrightarrow\frac{x-2}{\sqrt{x-1}+1}+\frac{x^4-5x^2+4}{x^2+1+\sqrt{7x^2-3}}=0\)
<=> \(\frac{x-2}{\sqrt{x-1}+1}+\frac{\left(x^2-1\right)\left(x^2-4\right)}{x^2+1+\sqrt{7x^2-3}}=0\)
<=> \(\left(x-2\right)\left(\frac{1}{\sqrt{x-1}+1}+\frac{\left(x^2-1\right)\left(x+2\right)}{x^2+1+\sqrt{7x^2-3}}\right)=0\)
vì \(\frac{1}{\sqrt{x-1}+1}+\frac{\left(x^2-1\right)\left(x+2\right)}{x^2+1+\sqrt{7x^2-3}}>0\)với mọi lớn hơn hoặc bằng 1
phương trình trên <=> x-2=0<=> x=2 thỏa mãn đk
Với x=2 ta có: \(y=\sqrt{2-1}=1\)
Hệ có 1nghiem (2,1)
Kết luận:... (2, 1), (1,1)
Ta đi chứng minh công thức tổng quát: \(f\left(n\right)=\frac{2n+1+\sqrt{n\left(n+1\right)}}{\sqrt{n}+\sqrt{n+1}}=\left(n+1\right)\sqrt{n+1}-n\sqrt{n}\)
Thật vậy: \(\left[\left(n+1\right)\sqrt{n+1}-n\sqrt{n}\right]\left(\sqrt{n}+\sqrt{n+1}\right)=\left(n+1\right)\sqrt{n\left(n+1\right)}-n^2+\left(n+1\right)^2-n\sqrt{n\left(n+1\right)}=2n+1+\sqrt{n\left(n+1\right)}\)Áp dụng, ta được: \(f\left(1\right)+f\left(2\right)+...+f\left(2020\right)=\left(2\sqrt{2}-1\sqrt{1}\right)+\left(3\sqrt{3}-2\sqrt{2}\right)+\left(4\sqrt{4}-3\sqrt{3}\right)+...+\left(2021\sqrt{2021}-2020\sqrt{2020}\right)=2021\sqrt{2021}-1\)
Bài 1:
Ta có: xy ≤ (x + y)²/4 = 1/4, dấu = xảy ra khi x = y = 1/2
P = (x² + 1/y²)(y² + 1/x²) = (xy)² + 1 + 1 + 1/(xy)²
= (xy)² + 1/[256(xy)²] + 255/[256(xy)²] + 2
ta có:
(xy)² + 1/[256(xy)²] ≥ 2 √(1/256) = 1/8. dấu = xảy ra khi x = y = 1/2
255/[256(xy)²] + 2 ≥ 255/(256.1/16) + 2 = 287/16. dấu = xảy ra khi x = y = 1/2
cộng theo vế → P ≥ 1/8 + 287/16 = 289/16
vậy GTNN của P là 289/16, đạt được khi x = y = 1/2