Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
AC2= AH2+HC2=122+162=144+156=400.
=> AC=20(cm )
BH2=AB2-AH2=132-122
=169 - 144 = 25 => BH=5(cm)
Do đó BC=BH+HC=5+16=21(cm)
Ta có :
\(AC^2=AH^2+HC^2\)
\(=>AC=20cm\)
\(BH^2=AB^2-AH^2\)
\(=>BH=5cm\)
\(=>BC=BH+HC=21cm\)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=12^2+16^2=400\)
\(\Leftrightarrow AC=\sqrt{400}=20cm\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=AB^2-AH^2=13^2-12^2=25\)
\(\Leftrightarrow BH=\sqrt{25}=5cm\)
Ta có: BH+CH=BC(H nằm giữa B và C)
\(\Leftrightarrow BC=5+16=21\left(cm\right)\)
Vậy: AB=20cm; BC=21cm
Ta có:
AC2= AH2+HC2=122+162=144+156=400.
=> AC=20(cm )
BH2=AB2-AH2=132-122
=169 - 144 = 25 => BH=5(cm)
Do đó BC=BH+HC=5+16=21(cm)
Ta có:
AC2= AH2+HC2=122+162=144+156=400.
=> AC=20(cm )
BH2=AB2-AH2=132-122
=169 - 144 = 25 => BH=5(cm)
Do đó BC=BH+HC=5+16=21(cm)
Tam giác AHC vuông tại H nên : AC^2 = AH^2 + CH^2 = 12^2 + 16^2 = 400
=> AC = 20 (cm)
Tam giác AHB vuông tại H nên : AB^2 = AH^2 + BH^2
=> BH^2 = AB^2 - AH^2 = 13^2 - 12^2 = 25
=> BH = 5 (cm)
=> BC = BH + HC = 5 + 16 = 21 (cm)
Tk mk nha
a: \(BH=\sqrt{AB^2-AH^2}=5\left(cm\right)\)
\(AC=\sqrt{AH^2+HC^2}=20\left(cm\right)\)
BC=BH+CH=21(cm)
Chu vi tam giác ABC là:
\(C=20+21+13=54\left(cm\right)\)
b: Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
dễ
AC2=162+122=400=202 =>AC=20 cm
BH2=132-122=25=52 =>BH=5 => BC = 16+5=21 cm
Áp dụng định lý Py-ta-go vào tâm giác AHC,ta có:
AC2 = HC2 + HC2
hay AC2=122 + 162
AC2=144 + 256
AC=20 (vì AC>0)
Áp dụng đinh lý Py-ta-go vào tâm giác vuông ABH, ta được
AB2=AH2+BH2
132=122 + BH2
BH2= 169-144
BH=5
Vậy BC=16+5=21
a) bạn tự vẽ hình nhé
sau khi kẻ, ta có AC=AH+HC=11
mà tam giác ABH vuông tại H
=> theo định lý Pytago => AH^2+BH^2=AB^2
=>BH=căn bậc 2 của 57
cũng theo định lý Pytago
=>BC^2=HC^2+BH^2
=>BC=căn bậc 2 của 66
b) bạn tự vẽ hình tiếp nha
ta có M là trung điểm của tam giác ABC => AM là đường trung tuyến của tam giác ABC vuông tại A
=>AM=MB=MC
theo định lý Pytago =>do tam giác HAM vuông tại H
=>HM^2+HA^2=AM^2
=>HM=9 => HB=MB-MH=32
=>AB^2=AH^2+HB^2 =>AB=căn bậc 2 của 2624
tương tự tính được AC=căn bậc 2 của 4100
=> AC/AB=5/4
CHÚC BẠN HỌC TỐT!!!
AC^2=AH^2+HC^2(py ta go)
AC^2=144+256=200 cm
suy ra AC=20 cm
AB^2=AH^2+BH^2
BH^2=AB^2-AH^2
BH^2=1169-144=25cm
BH=5cm
Mà BH+HC=BC suy ra 5+16=21
vạy AC=20 cm, BC=21cm