Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E D O
a)Xét ΔADB và ΔAEC có:
\(\widehat{ADB}=\widehat{AEC}=90^o\)
AB=AC(gt)
\(\widehat{A}\) : góc chung
=> ΔADB=ΔAEC ( cạnh huyền - góc nhọn)
=> BD=CE
b) Vì ΔADB=ΔAEC(cmt)
=> \(\widehat{ABD}=\widehat{ACE};AD=AE\)
Có: AB=AE+BE
AC=AD+DC
Mà: AB=AC(gt); AE=AD(cmt)
=>BE=DC
Xét ΔOEB và ΔODC có:
\(\widehat{OEB}=\widehat{ODC}=90^o\)
BE=DC(cmt)
\(\widehat{EBO}=\widehat{DCO}\left(cmt\right)\)
=> ΔOEB=ΔODC(g.c.g)
c) Vì: ΔOEB=ΔODC (cmt)
=> OB=OC
Xét ΔAOB và ΔAOC có:
AB=AC(gt)
\(\widehat{ABO}=\widehat{ACO}\left(cmt\right)\)
OB=OC(cmt)
=> ΔAOB=ΔAOC(c.g.c)
=> \(\widehat{OAB}=\widehat{OAC}\)
=> AO là tia pg của \(\widehat{BAC}\)
Sửa đề: Tia phân giác góc B cắt AC tại D. Tia phân giác góc C cắt AB tại E
a: Xét ΔABD và ΔACE có
góc ABD=góc ACE
AB=AC
góc A chung
Do đó: ΔABD=ΔACE
=>BD=CE
b: Xét ΔOEB và ΔODC có
góc EBO=góc DCO
EB=DC
góc OEB=góc ODC
DO đó: ΔEOB=ΔDOC
c: Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
DO đó: ΔABO=ΔACO
=>góc BAO=góc CAO
=>AO là phân giác của tia phân giác của góc BAC
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
hình bạn tự vẽ nha
a) \(\Delta ABC\) có \(\stackrel\frown{B}=\stackrel\frown{C}\) \(\Rightarrow\Delta ABC\)cân tại \(\stackrel\frown{A}\)(1)
vì BD là tia phân giác của \(\stackrel\frown{B}\)\(\Rightarrow\stackrel\frown{ABD=}\)\(\stackrel\frown{CBD}\)(2)
vì ce là phân giác của \(\stackrel\frown{C}\Rightarrow\stackrel\frown{ECB=\stackrel\frown{ECA}}\)(3)
từ (1),(2),(3) \(\Rightarrow\stackrel\frown{CBD}=\stackrel\frown{DBA}=\stackrel\frown{BCE}=\stackrel\frown{ECA}\)
xét tam giác BCD và tam giác CBE có:
\(\stackrel\frown{CBD}=\stackrel\frown{BCE}\)
\(\stackrel\frown{B}=\stackrel\frown{C}\)
BC chung
\(\Rightarrow\)\(\Delta BCD=\Delta CBE\left(ch-gn\right)\)
b) \(\Delta BOC\)có \(\stackrel\frown{OBC}=\stackrel\frown{OCB}\)\(\Rightarrow\Delta BOC\)cân tại O \(\Rightarrow OB=OC\)
c) xét \(\Delta AOB\)và \(\Delta AOC\)có
AO chung
AB=AC
\(\stackrel\frown{ABO}=\stackrel\frown{ACO}\)
\(\Rightarrow\Delta AOB=\Delta AOC\left(ch-gn\right)\)
\(\Rightarrow\stackrel\frown{BAO}=\stackrel\frown{CAO}\Rightarrow\stackrel\frown{OAD}=\stackrel\frown{OAK}\)
vì \(OH\perp AC\Rightarrow\stackrel\frown{OHA}=90^o\)
\(OK\perp AB\Rightarrow\stackrel\frown{OKA}=90^o\)
Xét \(\Delta OAK\)và \(\Delta OAH\)có:
\(\stackrel\frown{OKA}=\stackrel\frown{OHA}=90^o\)
\(\stackrel\frown{OAK}=\stackrel\frown{OAH}\)
OA chung
\(\Rightarrow\Delta OAK=\Delta OAH\left(ch-gn\right)\)
\(\Rightarrow OH=OK\)
nếu sai ở đâu mong bạn bỏ qua cho nha
a, xét tam giác abd và tam giác ace có
góc adb=góc aec =90o (gt)
góc a chung
ab=ac (do tam giác abc cân -gt)
suy ra tam giác abd= tam giác ace (cạnh huyền - góc nhọn)
b, có ad=ae (do tam giác abd = tam giác ace-cmt)
suy ra tam giác aed cân tại a
c, có ad=ae (cmt)
suy ra a thuộc đường trung trực của ed
xét tam giác aeh và tam giác adh có
góc aeh = góc adh=90o (gt)
ad=ae (cmt)
ah cạnh huyền chung
suy ra tam giác aeh=tam giác adh (cạnh huyền cạnh góc vuông)
suy ra hd=he
suy ra h thuộc đường trung trực của ed
suy ra ah là đường trung trực của ed
d,xét tam giác bdc và tam giác kdc có
bd=dk (gt)
góc bdc = góc cdk (=90o-gt)
cd chung
suy ra tam giác bdc = tam giác kdc (c.g.c)
suy ra góc dbc = góc dkc (1)
có góc bdc= góc abc - góc abd
góc ecb= góc acb - góc ace
mà góc abc=góc acb (do tam giác abc cân tại a -gt)
góc abd=góc ace (do tam giác abd=tam giác ace-cmt)
suy ra góc dbc= góc ecb (2)
từ(1)(2) suy ra góc ecb = góc dkc
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
b: Ta có: ΔABD=ΔACE
nên BD=CE; AD=AE
Xét ΔBCD và ΔCBE có
BC chung
CD=BE
BD=CE
DO đó: ΔBCD=ΔCBE
c: Xét ΔBHE vuông tại E và ΔCHD vuông tại D có
BE=CD
\(\widehat{EBH}=\widehat{DCH}\)
Do đó: ΔBHE=ΔCHD
d: Ta có: ΔBHE=ΔCHD
nên HB=HC
Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
Do đó: ΔABH=ΔACH
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
hay AH là tia phân giác của góc BAC