Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) \(\left\{{}\begin{matrix}AD=BD\\CD=DE\\\widehat{ADC}=\widehat{EDB}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta BED=\Delta ACD\left(c.g.c\right)\)
\(b,\left\{{}\begin{matrix}AM=MN\\MB=MC\\\widehat{AMB}=\widehat{CMN}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMB=\Delta NMC\left(c.g.c\right)\\ \Rightarrow\widehat{MCN}=\widehat{MBA}\)
Mà 2 góc này ở vị trí so le trong nên \(CN//AB\)
\(c,\Delta BED=\Delta ACD\Rightarrow\widehat{CAD}=\widehat{EBD}=90^0\\ \Rightarrow BD\bot BE\left(1\right)\)
\(\left\{{}\begin{matrix}AM=MN\\MB=MC\\\widehat{AMC}=\widehat{BMN}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMC=\Delta NMB\left(c.g.c\right)\\ \Rightarrow\widehat{MCA}=\widehat{MBN}\)
Mà 2 góc này ở vị trí so le trong nên \(AC\text{//}NB\Rightarrow NB\bot AB\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow NB\equiv BE\) hay E,B,N thẳng hàng
E B A C M D O
a) Xét tam giác CMA và tam giác BMD có :
\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)
=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)
=> ACBD là hình bình hành
=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm
b) Xét tam giác ABC và tam giác CDA có :
\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)
Chung AC
=> AD=BC
=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm
c) Xét tam giác ABC có :
M là trung điểm BC
A là trung điểm CE
Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm )
e) AM //BE => AD // BE
Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B
=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)
Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm
=> E,O , D thẳng hàng => đpcm
a) Xét \(\Delta MDA\)và \(\Delta CDB\)có:
MD = DC (gt)
DA = DB (gt)
\(\widehat{MDA}=\widehat{BDC}\)(đối đỉnh)
=> \(\Delta MDA=\Delta CDB\left(c.g.c\right)\)
b) Vì \(\Delta MDA=\Delta CDB\left(cma\right)\Rightarrow\widehat{MAD}=\widehat{DBC}\)(2 góc tương ứng)
Mà \(\widehat{MAD}\)so le trong với \(\widehat{DBC}\)
=> AM // BC (đpcm)
c) Xét \(\Delta AEN\)và \(\Delta BEC\)có:
EN = BE (gt)
AE = EC (gt)
\(\widehat{AEN}=\widehat{BEC}\)(đối đỉnh)
\(\Rightarrow\Delta AEN=\Delta CEB\left(c.g.c\right)\)
\(\Rightarrow\widehat{NAE}=\widehat{ECB}\)(2 góc tương ứng)
Mà \(\widehat{NAE}\)so le trong với \(\widehat{ECB}\)
\(\Rightarrow\)AN // BC
Ta có :
AN // BC
MA // BC
\(\Rightarrow AN\equiv MA\)
\(\Rightarrow\)M;A;N thẳng hàng (đpcm)
Bạn ơi câu a hình như bạn ghi sai đề rồi, phải là chứng Minh DC bằng EB chứ. Bạn xem lại hộ mình nhé nếu có gì mình xin lỗi ha
Nếu là đề sai theo mình là như vậy nè:
xét 2 Tam giác ABE và ACD có:
AE = AC (gt)
AB = AD(gt)
Â1 = Â2 (đối đỉnh)
suy ra Tam giác ABE = Tam giác ADC
Câu b
Vì 2 Tam giác ở câu a ta mới chứng Minh là bằng nhau nên ta có:
bạn tự vẽ hình và kí hiệu hình nhăn
ta có: góc D1 = góc B1 (2 góc tương ứng)
mà 2 góc này ở vị tí so le trong
suy ra BC // DE
A B M N C D E
a) xét tam giác ADM và tam giac BDC ta có
MD=DC (gt)
AD=DB(D là trung điểm AB)
góc ADM=góc BDC (2 góc doi đỉnh)
-> tam giác ADM= tam giác BDC (c-g-c)
b) ta có
góc MAD = góc DBC ( tam giác ADM= tam giác BDC )
mà 2 góc nẳm o vị trí soletrong
nên AM//BC
c)
xét tam giác AEN và tam giac BEC ta có
EN=EB (gt)
AE=EC(E là trung điểm AC)
góc AEN=góc BEC (2 góc doi đỉnh)
-> tam giác ANE = tam giác CBE (c-g-c)
-> góc NAE = góc BCE (2 góc tương ứng
mà 2 góc nằm o vi trí sole trong
nên AN//BC
ta có
AN//BC (cmt)
AM//BC (cmb)
-> AM trùng AN
-> A,M,N thẳng hàng
*-Bạn tự vẽ hình nhé!*
CM:a) Xét tam giác ADM và tam giác BDC có:
AD=BD(D là trung điểm của AB)
Góc ADM=góc BDC(đối đỉnh)
DM=DC(gt)
=> tgiac ADM = tgiac BDC (c.g.c)
b) =>góc MAD= góc DBC (hai góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> AM song song BC (1)
c) chứng minh tương tự, ta có: tgiac AEN=tgiac CEB(c.g.c)
=> góc NAE= góc CEB(hai góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> BC song song AN (2)
Từ (1) và (2)=> MA song song BC; AN song song BC
=> A,M,N thẳng hàng (ơ-clit)
*- cho mk nha!!!-Mơn b *:)*
b: Xét tứ giác ACNB có
M là trung điểm của BC
M là trung điểm của AN
Do đó:ACNB là hình bình hành
Suy ra: CN//AB
y chang bên trên